
RECENT DEVELOPMENTS IN THE THEORY OF TENSOR
EIGENVECTORS

HIROTACHI ABO

ABSTRACT. Eigenvectors of tensors, an extension of eigenvectors of matrices,
were introduced by L.-H. Lim [5] and L. Qi [8] independently in 2005 and have
been studied in numerical multi-linear algebra (see, for example, [5, 8, 6, 4]).
Recently, the concept of an eigenvector of a tensor drew attention to the al-
gebraic geometry community because algebraic geometry is proven to provide
useful techniques for the tensor eigenproblem. This is a preliminary report of
two on-going projects related to schemes, whose associated reduced schemes
are sets of eigenvectors of tensors, called eigenschemes that started during the
semester-long thematic program “AGATES: Algebraic Geometry with Applica-
tions to TEnsors and Secants.” The first is concerned with the the discrete clas-
sification of eigenschemes of tensors, and the second is to extend the concepts
of the sets of the right- and left-eigenvectors of matrices to tensors as well as to
explore the compatibility of such concepts.

1. INTRODUCTION

A non-zero vector is called an eigenvector of a matrix if the vector and its image
under the matrix are linearly dependent. This means that one can write the condi-
tions for a non-zero vector to be an eigenvector of a matrix in terms of the maximal
minors of the matrix obtained by concatenating these two vectors horizontally. We
call the scheme defined by such minors the eigenscheme of the matrix.

The geometry of the eigenscheme of a matrix gives an alternative interpretation
of the diagonalizability of the matrix. In fact, the eigenscheme of a diagonalizable
matrix and its associated reduced scheme (which we call the eigenvariety of the
matrix) share the same eigeninformation; while if the matrix is not diagonalizable,
then the eigenscheme and the eigenvariety are different and their difference makes
the Jordan structure of the matrix visible. For instance, the decomposition of the
eigenscheme into primary components contains the numeric data of the Jordan
matrix of the matrix, such as the number of Jordan blocks and the size of each
Jordan block. Therefore, the correspondence between matrices and eigenschemes
enables us to construct a dictionary between linear algebra and algebraic geometry.

The concept of eigenvectors of matrices was extended to tensors by L.-H. Lim [5]
and L. Qi [8] independently. As in the case of matrices, the conditions for a non-
zero vector to be an eigenvector of a tensor can be described in terms of polyno-
mials. Thus, one, analogously, can define the eigenscheme of a tensor as a (not
necessarily integral) scheme given by such polynomials. My primary interest is in
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seeking a tensor analog of the linear algebra-algebraic geometry dictionary as well
as to build a bridge between multi-linear algebra and algebraic geometry through
the study of algebro-geometric aspects of tensor eigenvectors.

The purpose of this manuscript is to report progress of two on-going projects
on eigenschemes of tensors, both of which came out of during (or just prior to)
the semester-long thematic program “AGATES: Algebraic Geometry with Appli-
cations to TEnsors and Secants.” (1) The first project is to give a discrete classifi-
cation of eigenschemes of tensors, and (2) the second project is about the compat-
ibility of eigenschemes of a tensor (a generalization of the compatibility between
the set of right eigenvectors and the set of left eigenvectors of a matrix).

(1) An ultimate goal is to classify eigenschemes up to isomorphism. This project
is concerned with a discrete part of this classification problem.

The classification is in terms of partitions of integers. If the eigenscheme ZA
of a tensor A ∈ (Cn+1)⊗d is of dimension 0, then the length of ZA is known to be
δ :=

∑n
i=0(d − 1)i (see [3, 7] for the proof). Suppose that ZA = Z0 ∪ Z1 ∪ · · · ∪ Zk

is the decomposition into irreducible components. If λi denotes the length of each
irreducible component Zi of ZA, then λ := (λ0, λ1, . . . , λk) forms a partition of δ,
which we call the partition of ZA. (For example, if ZA is non-singular of dimension
0, then ZA has the partition whose parts are all one.) The primary goal of this
project is to explore the question as to whether for each partition λ of δ, there
exists a tensor A ∈ (Cn+1)⊗d whose eigenscheme ZA has partition λ.

(2) An (n+1)× (n+1) matrix A and its transpose AT share the same eigenvalues,
but they do not necessarily share the same eigenvectors. There exists, however, the
“compatibility” between the set of eigenvectors of A and the set of eigenvectors of
AT (or equivalently the set of left eigenvectors of A).

Assume that A has n+ 1 distinct eigenvalues λ0, λ1, . . . , λn, and let v0, v1, . . . , vn
be eigenvectors corresponding to λ0, λ1, . . . , λn respectively. If B is the (n + 1) ×
(n + 1) matrix whose ith column is vi, then B−1AB = D, where D is the diagonal
matrix with diagonal entries λ0, λ1, . . . , λn. The columns of (B−1)T are eigenvectors
of AT . This implies that if S := {v0, v1, . . . , vn} and T := {w0,w1, . . . ,wn} are two
sets of n + 1 linearly independent vectors, then S and T are the sets of right- and
left-eigenvectors of A if and only if, after a suitable relabeling, wT

i v j = 0 whenever
i , j.

The compatibility between the sets of the right- and the left-eigenvectors of the
matrix can be expressed in terms of polynomial equations. The variety defined by
these polynomials is called the eigencompatibility variety for matrices.

The concepts of the sets of the right- and the left-eigenvectors of a matrix can
be extended to a tensor by flattening it in various ways, and the compatibility of
such concepts can also be translated into polynomial equations. Thus, one, analo-
gously, can define the eigencompatibility variety for tensors. The primary goal of
this project is two-fold; the first is to determine the dimensions of the eigencom-
patibility varieties for tensors, and the second is to find their equations.

This manuscript is organized as follows. In Section 2, we review the basic defi-
nitions and facts of tensor eigenvectors and tensor eigenschemes. In Section 3, we
discuss an alternative definition of the eigenscheme of a tensor, which represents
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the eigenscheme of the tensor as the zero locus of a global section of a certain vec-
tor bundle. In Section 4, we take a first step towards classifying the eigenschemes
in terms of partitions of integers, starting with the ternary cubic tensors (i.e., n = 2
and d = 3). In Section 5, the formula for the dimension of the eigencompatibility
variety for binary tensors will be given. The equations for such an eigencompati-
bility variety will also be discussed.

2. EIGENSCHEMES OF TENSORS

Throughout this manuscript, we denote by V an (n+1)-dimensional vector space
over C with basis S := {e0, e1, . . . , en} and by V∗ the dual of V . Let PV be the
projective space of lines of V passing through the origin. If v ∈ V is non-zero, then
we denote by [v] the equivalence class of v. Let V⊗d be the tensor product of d
copies of V .

For each i := (i1, i2, . . . , id) ∈ Λ := (Zn)d, we write ei for ei1 ⊗ei2 ⊗· · ·⊗eid ∈ V⊗d

and xi for the monomial
∏d
α=1 xiα . Let

A :=
∑
i∈Λ

ai ei

and let A xd−1 be the element of V ⊗ Symd−1(V∗) = HomC(Symd−1(V),V) defined
by

A xd−1 :=
n∑
α=0

eα ⊗ [A xd−1]α,

where
[A xd−1]α :=

∑
0≤i2≤···≤id≤n

aαi2...id xi2 · · · xid .

Definition 2.1. A non-zero vector v ∈ V is called an E-eigenvector (or just an
eigenvector) of A if A vd−1 = λ v for some λ ∈ C.

Remark 2.2. Let x =
∑n

i=0 xiei and let [x]S be the coordinate vector of x with
respect to S . If d = 2, then A can be considered as a linear transformation from V
to V∗. If [A]S denotes the matrix representation of A with respect to S and the dual
basis associated with S , then A x1 = [A]S [x]S . Hence the concept of eigenvector
of a tensor can be thought of as a natural extension of the concept of an eigenvector
of a matrix.

Let A ∈ V⊗d and let v ∈ V be an eigenvector of A. By definition, the vectors
A vd−1 and v are linearly dependent. This means that v ∈ V is an eigenvector of
A if and only if the coefficients of ei ∧ e j, 0 ≤ i < j ≤ n, in A xd−1 ∧ x, vanish
at v. It also follows immediately that a non-zero v ∈ V is an eigenvector of A if and
only if a non-zero scalar multiple of v is an eigenvector of A. We, therefore, can
unambiguously define an “eigenpoint” of A in PV as [v].

Definition 2.3. An element [v] of PV is called an eigenpoint of A if it lies in the
algebraic subset in PV defined by the homogeneous ideal IA generated by the coef-
ficients of A xd−1∧x of ei∧e j, 0 ≤ i < j ≤ n, . We call the set of eigenpoints of A the
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eigenvariety of A and the closed subscheme of PV defined by IA the eigenscheme
of A. We write VA and ZA for the eigenvariety and eigenscheme of A respectively.

Remark 2.4. If A ∈ V⊗d, then, identifying with its coordinate vector with respect to
S , A xd−1 can be considered as the vector of homogeneous polynomials of degree
d − 1. Therefore, it can also be viewed as a polynomial rational map from PV to
PV itself. Thus, the eigenpoints of A is, by definition, either a fixed point of A xd−1

or a point where A xd−1 is undefined.

If the eigenscheme ZA of A is non-singular of dimension 0, then the length of ZA
is known.

Theorem 2.5 ([3, 7]). If the eigenscheme ZA of A ∈ V⊗d is zero dimensional, then
the length of ZA is

(2.1)
(d − 1)n+1 − 1

d − 2
=

n∑
i=0

(d − 1)i.

Remark 2.6. The above formula was first given in [6] when d is even. In the same
paper, it was suggested the same formula holds for arbitrary d. In [3], D. Cartwright
and B. Sturmfels solved this conjecture using techniques from toric geometry.
In [7], L. Oeding and G. Ottaviani also obtained the same formula using the vector
bundle approach, which we will illustrate in the next section.

3. EIGENSCHEMES VIA VECTOR BUNDLES

The main purpose of this subsection is two-fold: to show that the eigenscheme
of a tensor can be viewed as the zero scheme of a global section of a certain vec-
tor bundle, and to describe how to use the language of vector bundles to study
eigenschemes of tensors.

In addition to the notation introduced in Section 2, we also use the following
symbols:

(1) O := OPV the sheaf of rings on PV;
(2) O(1) the hyperplane bundle on PV;
(3) O(−1) the dual bundle of O(1);
(4) O(d) the tensor product of |d| copies of O(1) (resp. O(−1)) if d ≥ 0 (resp.

d < 0).
If F is a coherent sheaf on PV , then F(d) denotes F ⊗ O(d), and HiF :=

Hi(PV, F) denotes the ith cohomology group of F.
Let K• be the Koszul complex, i.e., the complex {Kα,∧αx}0≤α≤n with

Kα :=
α∧

V ⊗ O (d + α − 2) ,

and ∧αx : Kα → Kα+1 is determined by

∧αx (ei1 ∧ ei2 ∧ · · · ∧ eiα) :=
n∑

j=0

x j e j ∧ ei1 ∧ · · · ∧ eiα .

Note that ∧0x = x and ∧1x = ∧x.
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The tangent bundle T (d − 2) := TPV (d − 2) twisted by d − 2 is obtained as the
cokernel of x, i.e.,

(3.1) 0 // O(d − 2) x // V ⊗ O(d − 1) ∧x // T (d − 2) // 0.

Note that

H0O(d − 2) = Symd−2(V∗),

H0(V ⊗ O(d − 1)) = V ⊗ Symd−1(V∗),

H1O(d − 2) = 0.

Thus, taking the cohomology yields the following exact sequence:

(3.2) 0 // Symd−2(V∗) x // V ⊗ Symd−1(V∗) ∧x // H0T (d − 2) // 0.

Notice that the image of A xd−1 under ∧x equals the exterior power of A xd−1 and
x. Therefore, there exists a natural isomorphism

H0T (d − 2) = {A xd−1 ∧ x | A ∈ V⊗d}.

from which it follows that a non-zero vector v ∈ V is an eigenvector of A if and
only if [v] ∈ PV is a point of the zero scheme of the corresponding global section
of T (d − 2). In other words, a subscheme of PV is the eigenscheme of a tensor of
V⊗d if and only if it is the zero scheme of some global section of T (d − 2).

Remark 3.1. (1) From the short exact sequence (3.2) it follows that every el-
ement of PV is an eigenpoint of A ∈ V⊗d if and only if A xd−1 is a scalar
multiple of x by a non-zero element of Symd−2(V∗).

(2) Since T (d − 2) is globally generated, the zero scheme of a generic global
section of T (d − 2) is non-singular of codimension n. In particular, if A ∈
V⊗d is generic, then the zero scheme of the corresponding global section
of T (d − 2) is reduced and has codimension n. Furthermore, its length
coincides with the top Chern class of T (d − 2), which is

∑n
i=0(d − 1)i (see

Theorem 2.5.)
(3) The tensors in V⊗d whose eigenscheme is non-singular of codimension n

form an open subset of the projective space of V⊗d. The complement of
such an open subset (denoted ∆n,d) is called the eigendiscriminant, which is
proven to be an irreducible hypersurface of degree (n+ 1)n(d− 1)n (see [2]
for more details).

4. CLASSIFICATION OF EIGENSCHEMES IN TERMS OF PARTITIONS

Suppose that the eigenscheme ZA of A ∈ V⊗d has dimension 0. Let δ denote the
length of ZA, so that δ =

∑n
i=0(d − 1)i, and let ZA have a decomposition

ZA = Z0 ∪ Z1 ∪ · · · ∪ Zk

into irreducible components. We write λi for the length of each primary component
Zi. By reordering Z0,Z1, . . . ,Zk if necessary, we can associate to ZA the partition
λ := (λ0, λ1, . . . , λk) of δ, and we call λ the partition of ZA.



6 HIROTACHI ABO

Example 4.1. (1) If A ∈ V⊗d is generic (i.e., A < ∆n,d), then ZA is non-
singular of codimension 0 (see Remark 3.1), which means that each pri-
mary component of ZA is a reduced closed point, and hence ZA has partition
(1, 1, · · · , 1︸      ︷︷      ︸

δ

).

(2) Recall that the eigendiscriminant ∆n,d parameterizes tensors whose eigen-
scheme is “singular” (i.e., it is singular of codimension n or has a positive
dimensional component). If [A] ∈ ∆n,d is generic, then the partition of ZA
is (2, 1, 1, . . . , 1︸      ︷︷      ︸

δ−1

).

(3) Let

A :=
n−1∑
i=0

ei+1 ⊗ ei ⊗ · · · ⊗ ei︸        ︷︷        ︸
d−1

∈ V⊗d.

Since A xd−1 = e1 ⊗ xd−1
0 + e2 ⊗ xd−1

1 + · · · + en ⊗ xd−1
n−1, the ideal IZA of ZA

is generated by the following set:{
xd

0

}
∪
{

x0xd−1
i

∣∣∣ 1 ≤ i ≤ n − 1
}
∪

{
xd−1

i x j+1 − xi+1xd−1
j

∣∣∣∣ 0 ≤ i < j ≤ n − 1
}
.

Let P be the point defined by x0 = x1 = · · · = xn−1 = 0. If IP denotes
the ideal of P, then one can prove that IZA contains the (2d − 1)(n − 1)th
power of IP, which implies that IZA is IP-primary. Therefore, ZA is a zero-
dimensional closed subscheme of length δ supported at P, and hence (δ) is
the partition of ZA.

Example 4.1 leads us to the question as to whether, for each of the remaining
partitions λ of δ, there exists a tensor A ∈ V⊗d whose eigenscheme ZA has parti-
tion λ.

Remark 4.2. There are two cases, where the answer is known. The first is the case,
where n = 1, and the other is the case, where d = 2.

If n = 1, then every zero-dimensional closed subscheme of length δ = d is the
eigenscheme of some order-d binary tensor (see [2, Remark 4.2] for more details).
Therefore, for any partition λ of d, there exists an order-d binary tensor whose
eigenscheme has partition λ. If d = 2 and if λ = (λ0, λ1, . . . , λk) is a partition of
δ = n+1, then the eigenscheme of the matrix whose Jordan canonical form consists
of k Jordan blocks of sizes λ0, λ1, . . . , λk has partition λ (see [1] for more details).

The following theorem, which is a part of the ongoing project with F. Galuppi,
F. Gesmundo, P. Santarsiero, T. Seynnaeve, affirmatively answers the question for
the first non-trivial case.

Theorem 4.3. If n = 2 and d = 3, then, for every partition λ of δ = 7, there exists
a tensor A ∈ V⊗d whose eigenscheme has partition λ.

Remark 4.4. The proof of Theorem 4.3 is by explicit construction. More precisely,
for each partition λ of 7, we constructed an order-3 ternary tensor whose eigen-
scheme has partition λ.
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5. COMPATIBILITY OF EIGENCONFIGURATIONS

Let V be an (n+ 1)-dimensional vector space over C and let S := {e0, e1, . . . , en}

be a basis. As in Section 2, for each i := (i1, i2, . . . , id) ∈ Λ := (Zn)d, we write ei
for ei1 ⊗ ei2 ⊗ · · · ⊗ eid ∈ V⊗d and xi for the monomial

∏d
α=1 xiα .

To each tensor A =
∑

i∈Λ ai ei ∈ V⊗d, we assign the following element of V ⊗
Symd−1V∗:

(5.1) A(α) xd−1 =
∑
i∈Λ

eiα ⊗ ai
(
xi/xiα

)
=
∑
i∈Λ

eiα ⊗ ai xi1 · · · xiα−1 xiα+1 · · · xid .

Note that V ⊗ Symd−1V∗ = Hom
(
Symd−1V, V

)
. For each j ∈ {0, . . . , n − 1},

let [A(α) xd−1] j be the jth coordinate of A(α) xd−1 when considered as an element
of Hom

(
Symd−1V, V

)
. In concrete term,[

A(α) xd−1
]

j
=
∑

i∈Λα, j

ai xi1 · · · xiα−1 xiα+1 · · · xid ,

where Λα, j is the set of d-tuples of elements of Zn whose αth component is j.

Definition 5.1. For each α ∈ {1, 2, . . . , d}, let IA,α be the ideal generated by the
coefficients of ei, i ∈ Λ, in A(α) xd−1 ∧ x. The scheme defined by IA,α is called the
αth eigenscheme of A and denoted by ZA,α. We call a closed point of ZA,α an αth
eigenpoint of A.

Remark 5.2. (1) If A ∈ V⊗d such that ZA,α, then, by Theorem 2.5, then the
length of ZA,α is D(n, d) :=

∑n
i=0(d − 1)i.

(2) As is mentioned in Remark 3.1, the eigenscheme ZA,α of each A ∈ V⊗d can
be interpreted as the zero scheme of a global section sA,α of T (d − 2) for
each α ∈ {1, 2, . . . , d}.

Definition 5.3. For each α ∈ {1, 2, . . . , d}, define a map φα : PV⊗d → PH0T (d − 2)
by sending [A] to [sA,α], and let φ := (φ1, φ2, . . . , φd) : PV⊗d → (PH0T (d − 2))⊕d.
We call the image of PV⊗d under φ the eigencompatibility variety and denote it by
ECn,d.

Example 5.4. We consider the case where n = 1 and d = 2. If

A :=
[

a00 a01
a10 a11

]
,

then A(1) x1 = A x and A(2) x1 = AT x. In particular,

A(1) x1 ∧ x = −a10x2
0 + (a00 − a11)x0x1 + a01x2

1,

A(2) x1 ∧ x = −a01x2
0 + (a00 − a11)x0x1 + a10x2

1.

Thus, the map φ : PV⊗d → (PH0T )⊕2 = (PH0O(2))⊕2 is given by

φ([A]) = ([−a10 : a00 − a11 : a01], [−a01 : a00 − a11 : a10]).

If ([u0 : u1 : u2], [v0 : v1 : v2]) denotes the bi-homogeneous coordinates of
(PH0O(2))⊕2, then EC1,2 is defined by the 2 × 2 minors of the following matrix:[

u0 u1 u2
−v2 v1 −v0

]
.
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This implies that EC1,2 is the double Veronese embedding of PH0O(2). In particu-
lar, dim EC1,2 = 2.

The following theorem, which is a part of the ongoing collaboration with J.
Buczyński and A. Woo, solved the problem of finding the dimension of the eigen-
compatibility variety for the binary case, which was suggested in [2].

Theorem 5.5.

dim EC1,d =

{
d2 − d + 1 if d is odd,
d2 − d if d is even.

Remark 5.6. For each α ∈ {1, 2, . . . , d}, let [u(α)
0 : u(α)

1 : · · · : u(α)
n ] be the homoge-

neous coordinates of the αth factor of (PH0O(d))⊕d and let k := ⌊d/2⌋. Consider
the following linear forms:

L(α)
0 :=

k∑
t=0

(−1)tu(α)
2t

and

L(α)
1 :=

{ ∑k−1
t=0 (−1)tu(α)

2t+1 if d is even,∑k
t=0(−1)tu(α)

2t+1 if d is odd.

The eigencompatibility variety EC1,d is contained in the subvariety Md of (PH0O(d))⊕d

defined by the 2 × 2 minors of the following matrix:[
L(0)

0 L(1)
0 · · · L(d−1)

0
L(0)

1 L(1)
1 · · · L(d−1)

1

]
.

Note that the subvariety Md is geometrically interpreted as follows: If P(α)
λµ de-

notes the hyperplane of the αth factor of (PH0O(2))⊕d defined by λL(α)
0 + µL

(α)
1 for

each [λ : µ] ∈ P1, then

Md =
⋃

[λ:µ]∈P1

(P(1)
λµ × P(2)

λµ × · · · × P(d)
λµ )

whose singular locus is defined by L(α)
0 = L(α)

1 = 0. In particular, dim Md =

d(d − 1) + 1. Therefore, EC1,d = Md if d is odd, while EC1,d ⊊ Md if d is even.

ACKNOWLEDGEMENT

This work is partially supported by the Thematic Research Programme "Ten-
sors: geometry, complexity and quantum entanglement", University of Warsaw,
Excellence Initiative – Research University and the Simons Foundation Award No.
663281 granted to the Institute of Mathematics of the Polish Academy of Sciences
for the years 2021-2023.”



RECENT DEVELOPMENTS IN THE THEORY OF TENSOR EIGENVECTORS 9

REFERENCES

[1] H. Abo, D. Eklund, T. Kahle, and C. Peterson, Eigenschemes and the Jordan canonical form,
Linear Algebra Appl. 496 (2016), 121–151.

[2] H. Abo, A. Seigal, and B. Sturmfels, Eigenconfigurations of tensors, Algebraic and geometric
methods in discrete mathematics, 1–25, Contemp. Math., 685, Amer. Math. Soc., Providence,
RI, 2017.

[3] D. Cartwright and B. Sturmfels, The number of eigenvalues of a tensor, Linear Algebra Appl.
438 (2013), no. 2, 942–952.

[4] T. Kolda and J. Mayo, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix
Anal. Appl. 32 (2011), no. 4, 1095–1124.

[5] L.-H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAM-
SAP’05: Proceeding of the IEEE International Workshop on Computational Advances in Multi-
Sensor Adaptive Processing, 2005, pp. 129–132.

[6] G. Ni, L. Qi, F. Wang, and Y. Wang, The degree of the E-characteristic polynomial of an even
order tensor, J. Math. Anal. Appl. 329 (2007) 1218–1229.

[7] L. Oeding and G. Ottaviani, Eigenvectors of tensors and algorithms for Waring decomposition,
J. Symbolic Comput. 54 (2013), 9–35.

[8] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40 (2005) 1302–1324.

DEPARTMENT OF MATHEMATICS AND STATISTICAL SCIENCE, UNIVERSITY OF IDAHO, MOSCOW,
ID 83844-1103, USA

Email address: abo@uidaho.edu


	1. Introduction
	2. Eigenschemes of tensors
	3. Eigenschemes via vector bundles
	4. Classification of eigenschemes in terms of partitions
	5. Compatibility of eigenconfigurations
	Acknowledgement
	References

