GEOMETRY OF TENSORS:
OPEN PROBLEMS AND RESEARCH DIRECTIONS

FULVIO GESMUNDO

ABSTRACT. This is a collection of open problems and research ideas following the presentations
and the discussions of the AGATES Kickoff Workshop held at the Institute of Mathematics of
the Polish Academy of Sciences (IMPAN) and at the Department of Mathematics of University
of Warsaw (MIM UW), September 19-26, 2022.

The topics covered during the workshop and in this document range from Classical Algebraic
Geometry and Representation Theory to Theoretical Computer Science, Quantum Physics
and Data Science. Twelve speakers from different fields presented open problems in their area
of study, with the goal of providing research directions that the participants could pursue
during the rest of the AGATES semester, incentivizing new collaborations and the use of tensor
geometry in different areas.

In this document, we organize the research directions into four subjects which reflect those
covered during the AGATES Summer School held the week prior to the Kickoff Workshop.
In each section, we provide brief information on the background of the corresponding topic.
However, this document is by no mean self-contained: we provide some useful references which
would help the interested reader to develop a general understanding of the topic, and of the
state of the art. It is clear that the references contain much more than what is needed to
understand the open problems described below; our suggestion is that the reader should go
through these notes, and only later supplement the theory they need to completely understand
a problem that piques their interest.

e We assume knowledge of algebraic geometry at a basic level. The definition of variety,
dimension, degree, the basic properties of the ideal-variety correspondence, and some
undergraduate level commutative algebra is assumed. We refer to [Har92| for the basics
of the required projective geometry.

e Central in these notes, especially in their first part, is the theory of tensor rank, and
some of its variants. [BCCT18, Lan12] cover all the required theory and much more.
An introduction for the theory of secant varieties, from a geometric point of view, can
be found in [CGO14, One22].

e We refer to [Ven23| for an introduction to the Spectral Theory of Tensors. The topic is
covered extensively from the point of view of tensor analysis in [()L.17]. More recent
developments, together with a study of this topic from a more geometric point of view,
can be found in [Sod20, Tei22].

e Geometric and algebraic methods in Theoretical Computer Science and Complexity
Theory are covered in detail in [Lanl7]|. [BI18] covers an introduction to geometric
complexity theory, which contains essentially all the material needed to start working
on it. [BCS97] is a complete textbook on algebraic complexity theory.

e The geometry of tensors in quantum physics is extremely diverse. We refer to [Oril4,
STGT19] for an introduction to tensor networks. A more geometric point of view is
taken in [Ste23, Sey22].
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We point out that the role of tensors is central in geometry and in many related fields and
there are a number of related topics which offer many research directions. These notes represent
a small cross section. At the end of each section, we propose some additional topics, which
have not been explored in detail during the AGATES Kickoff Workshop, but we believe they
might be of interest for the readers of these notes as they present numerous open directions
and applications.
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Notation. We mainly work over complex numbers. In some sections, we mention connection
to real geometry; we say explicitly when we do so. Given a vector space V, PV denotes the
projective space of lines in V; V* denotes the dual space of V. For spaces VW, V@ W
denotes the tensor product of V' and W; it can be equivalently be identified with the space
of linear maps Hom(V*, W) ~ Hom(W*, V') or with the space of bilinear map V x W — C.
For d > 0, let V®? denote the d-th tensor power of V. Then SV C V®? denotes the subspace
of symmetric tensors, which are those tensors invariant under the action of the symmetric
group &4 acting by permutation on the tensor factors; SV can be identified with the space of
homogeneous polynomials of degree d on V*. For a subset S C V, let (S) denote the linear
span of S; if S C PV, the same notation refers to the projective linear span.

PART 1: CLASSICAL GEOMETRY

Let Vi,..., Vi be vector spaces of dimension ni,...,ng respectively and let dy,...,d; be
non-negative integers. The Segre-Veronese embedding of multidegree (dy, ..., dg) is the map
Vdy, oy PVE X X PV = P(STV, @ - @ S V});

its image, denoted 73, . 4, , is the Segre-Veronese variety of partially symmetric tensors of rank
one

Yy =P @ @0 0 €V} CPSUV @ - @ SV
When k = 1, this is the Veronese variety of powers of linear forms. If (di,...,d;) = (1,...,1),
this is the Segre variety of decomposable tensors.
Given a variety X C PV, and an element p € PV, the X-rank of p is

(1) Rx(p) = min{r : p € (z1,...,x,) for some z1,...,x, € X};

the r-th secant variety of X is

or(X)={pePV:Rx(p) <r}
where the closure is equivalently in the Zariski or the Euclidean topology. The border X -rank
of pis

Ry (p) = min{r:r € 0,.(X)}.
Clearly Rx(p) < Rx(p) and for most algebraic varieties X there are examples where the
inequality is strict.
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1.1. Dimension of secant varieties. A great deal of research has been spent in the study of
secant varieties and of particular interest is the study of their dimension. A straightforward
parameter count shows that for a variety X C PV one has

dimo,(X) <min{rdim X +r —1,dimV — 1};

we say that o,(X) has the expected dimension if equality holds; we say that X is r-defective,
or that o, (X) is defective, if the inequality is strict.

In general, little is known about dimension of secant varieties. It is a classical fact that
curves are never defective [Pal06], defective surfaces and threefolds were classified in the the
early XX century [Sev01, Sco08|, defective fourfolds have been classified recently |[CCR20]. In
the setting of Segre-Veronese varieties, more is known. Veronese varieties are not defective,
except for a finite list of known examples, classified in [AH95|. For more general choices of
dimension and multi-degree less is known. A summary of the state-of-the-art can be found in
[BCCT18, GO22|. The problem is open in general and it is typically believed that the known
defective cases are the only existing ones.

We propose the following very general research direction:

Problem 1. Classify defective Segre- Veronese varieties and determine their dimension.

Via Terracini’s Lemma [BCCT18, Lemma 1|, Problem 1 can be rephrased in terms of
speciality of certain line bundles on the product of multiprojective spaces. Given a line bundle
L on a variety X and a zero-dimensional scheme X C X, we say that X imposes independent
conditions on L if

dim H°(Zx ® £) = max{dim H°(£) — deg(X), 0}.

We say that a line bundle £ is special if there is 7 > 1 such that r double points with generic
supports in X do not impose independent conditions on £. Via Terracini’s Lemma, this
condition is equivalent to the fact that the r-th secant variety of X is defective [BCCT18].

Problem 2. Classify special line bundles on the product of projective spaces. More generally,
classify special line bundles on interesting classes of varieties.

In general, one may ask whether other 0-dimensional schemes, different from the union of
double points, impose independent condition on certain line bundles. This is, for instance, the
object of the Segre-Harbourne-Gimigliano-Hirschowitz Conjecture, which, roughly speaking,
predicts that fat points with generic support impose independent conditions except for a
classified list of known cases; related conjectures appear in [Nagh9, LU0O6G|. The case of schemes
contained in a union of double points in P™ is studied in [BO11]; the case of curvilinear schemes
is studied in [CG94]. For a small number of points in P", the situation is understood, see e.g.
[BDP15, BDP16].

In principle, one can study the case of schemes with arbitrary supports. A classification
in this case is expected to be out of reach. However, specializing the question to the case
of O-dimensional scheme of degree 2 makes the problem much more tractable. This case has
important connections to the study of Terracini loci [BC21]|, which are varieties associated to
the secant varieties and control (at least partially) their singular loci.

Problem 3. Given a variety X, a line bundle L on X and an integer r, determine whether
there exists a 0-dimensional scheme X C X which is union of disjoint schemes of degree 2, such
that the reduced scheme X' imposes independent conditions on £ but X does not.

For small r, several classical results translate to an answer to Problem 3. For r = 2
the case of curves amounts to characterizing the edge variety of the variety X; this is well
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understood for curves, and partial results are known for surfaces [RS12, RS11b, MRS22].
For small r, there are several result in the setting of Veronese and Segre-Veronese varieties
[BC21, BBS20, BV23, CG23]. An unrestricted version of Problem 3 seems hard to approach,
but even partial answers for special classes of varieties would be valuable.

1.2. Generalized additive decompositions and 0-dimensional schemes. In order to
investigate the relations between rank and border rank of tensors, several related notions of
rank have been introduced in the literature. We mention one of them which is important for
this section.

Given a variety X C PV and a point p € PV, the cactus X-rank of p [BR13, BB14] is

cRx(p) = min{r : p € (X) for some 0-dimensional scheme X C X, with deg(X) = r}.

Note that the definition of cactus rank reduces to the one of rank under the additional hypothesis
that the scheme X is smooth, namely a union of r distinct points; in particular cRx (p) < Rx(p).
Of particular interest for this section is the case where X = vg(PV) C PS?V is a Veronese
variety. In this case, apolarity theory guarantees that f € (v4(X)) if and only the defining ideal
Ix C Sym(V*) of X is contained in the apolar ideal Ann(f) of f; we refer to [BCCT18, Sec.
2.1.4] for an introduction to the theory. We say that X C PV is apolar to f if Ix C Ann(f).
We say that X is non-redundant if there is no proper subscheme X’ C X which is apolar to f.
We say that X is minimal if deg(X) = cRx(f).

In the setting of symmetric tensor, one defines a generalized additive decomposition (GAD)
of f € SV to be an expression of the form

f=6 g4 g,

with ged(gi, £;) = 1 and ¢4, ..., s distinct. A Waring rank decomposition of f is a special GAD
for f; similarly, the trivial decomposition f = f is a GAD for f, as well.

One can naturally associate a zero dimensional scheme X C PV to the GAD of a homogeneous
polynomial f € S4V. The construction is technical and we refer to [BJMR18] for the details;
its degree gives a notion of length for the corresponding GAD.

Given f € SV, the relation between the schemes apolar to f and the schemes associated to
GADs for f is not entirely understood. In general, it is true that if X is a scheme associated
to a GAD for f, then X is apolar to f [BBM14, BJMR18]. The converse does not necessarily
hold: there are schemes apolar to f which are not induced by a GAD [BOT22|. However,
a partial converse is true: If X is a scheme apolar to f € SV then there exists a degree D
and an extension & c SPV of f (namely an antiderivative with respect to some differential
operator) such that X is associated to a GAD for f** [BBMI4]. An important parameter
that controls these relations is the Castelnuovo-Mumford regularity of the scheme. We refer to
[Eis05] for the basic properties of this notion. If X is a scheme of regularity reg(X) < d, then
X is apolar to f if and only if it contains a subscheme X’ associated to a GAD for f. Given
f, it is however not clear what is the maximum possible reg(X) for a scheme associated to a
GAD for f or for a (minimal) scheme apolar to f.

Problem 4. Let f € SV and let X be a minimal apolar scheme for f. Is reg(X) < d?

It is known that the bound reg(X) < d does not necessarily hold if X is an irredundant
scheme apolar to a form f € SV.

Problem 5. Determine the mazimum possible value of reg(X) for the regularity of an irredun-
dant scheme apolar to a form f € SV.
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Moreover, schemes associated to certain particular GADs are regular in degree d: this is the
case, for instance, of reduced schemes (which are associated to Waring decompositions) and of
schemes of degree 2 (associated to tangential decompositions) [BT20].

Problem 6. For f € SV, let X be the scheme associated to a GAD of minimal length. Is
reg(X) < d? In general, determine what conditions on f guarantee the existence of a GAD
whose associated scheme has low reqularity.

1.3. Degree of secant varieties. A classical topic in algebraic geometry is determining
the degree of secant varieties. Of particular interest is the case of secant varieties which are
hypersurfaces. For instance, in [K522], it was observed that if X is a real algebraic variety,
whose complexification X¢ has a secant variety which is a hypersurface, then the defining
equation of this hypersurface is a candidate example for a hyperbolic polynomial whose cone
cannot be described by a linear matrix inequality. In [CGJ19], varieties having a secant variety
which is a hypersurface were used to produce examples of strict submultiplicativity of rank
and border rank under the Segre product.

A lower bound for the degree of the second secant variety is given in [CRO6]. If X C PV
is a non-degenerate variety, and codimoy(X) = ¢, then deg(oa2(X)) > (632). A classical
application of the double point formula [EH16, Sec. 2.4] allows one to compute the degree of
secant varieties of curves: If C' C PV is a non-degenerate curve of degree d and genus g, then
deg(o2(X)) = w — g. In [CRO6], a more involved use of the double point formula, in
connection with the theory of weakly defective varieties, was used to classify varieties X such
that deg(o2(X)) attains the lower bound (CJZFQ).

For higher secant varieties, little is known. Some special cases are entirely or almost entirely
understood: we mention rational normal curves and elliptic normal curves [Fis06], and sporadic
examples of secant varieties of some Segre-Veronese varieties [Str87, LM04, Ott09].

We propose two problems in this direction:

Problem 7. Provide lower bounds for the degree of higher secant varieties, in the spirit of
[CRO6].

Problem 8. Classify varieties of small dimension having second and (or) third secant variety of
minimal degree. More generally, given r, produce a variety X such that o.(X) is a hypersurface
of the smallest possible degree.

1.4. Other topics. The recent [BB21] developed a border version of apolarity theory, based on
the multigraded Hilbert scheme introduced in [HS04]. The study of limits of saturated ideals
presents interesting connections to deformation theory [JM22, Man22|, and offers a number of
new interesting open directions.

Moreover, the research on equations for secant varieties remains an important topic with
many open problems. New directions can be explored in connection with the mentioned border
apolarity, in the spirit of [CHL19].

PART 2: SPECTRAL THEORY OF TENSORS

Spectral theory of tensors is a topic lying across algebraic geometry and optimization theory.
Indeed, it is the natural generalization to the tensor setting of the classical spectral theory of
matrices, with its connections to semidefinite programming. The optimization theory is often
done over the real numbers, even though the geometry is best done in the complex setting.

The (real) Euclidean distance plays an important role. Hence, given a complex space V,
one usually fixes a real subspace Vg, and a full rank quadratic form (i.e., an inner product)
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(—,—) € S?2V* with the property that its restriction to Vi is positive definite. Then (—, —)
can be used to define a Euclidean distance || — || on Vg, as well as an identification V' ~ V* of
V' with its dual space.

Given V as above, and a tensor T' € V®¢, an eigenvector of T is an element v € V such that

f2 o dv®(d*1) = v for some A € C*; here ~ denotes the tensor contraction on all but the

first tensor factor, after the identification of V with V. It is clear that since the tensor v®(@—1)
is symmetric, the eigenvectors only depend on the partially symmetric component of 1" in the
space V ® S?71V . Similar definitions can be given by choosing the contraction on different
tensor factors; this gives rise to the eigencompatibility variety discussed in Section 2.2.

The most immediate generalization from the matrix setting to the tensor setting is for
symmetric tensors. If f € S?V is identified with a homogeneous polynomial on V', then the
definition of eigenvectors for f is equivalent to the condition V f(v) = Av for some A € C*;
here V f denotes the differential of f or equivalently the vector of its partial derivatives for
some choice of coordinates.

Denote by f|y the restriction of f to a function on the unit sphere Ly = {v € V : (v,v) = 1}:
it is easy to see that v is an eigenvector for f if and only if it is a critical point of f|y, with
critical value A = f(v). The spectral norm of f is defined to be || f|lcoc = max{|f(v)|: v € Xy}
and it coincides with the largest modulus of a critical value of f. When f is a quadratic form,
or equivalently 7" is a symmetric matrix, these notions specialize to the analogous notions for
matrices.

2.1. Eigenvectors and eigenschemes of symmetric tensors. The eigenscheme of a
homogeneous polynomial f € S%V is the subscheme Xy of PV defined by the condition
Vf(w)Av=0;if xg,...,z, are coordinates on V', this is equivalent to the vanishing of the

2 x 2 minors of the matrix
:I/‘O “ . xn
Of -+ Onf,
o)

where 0; = 57— is the partial derivative in the variable x;. This generalizes the notion of the
J

set of eigenvectors of a symmetric matrix. In [F594, CS13], it was observed that if f is generic,
—1)nti_ C . .
then its eigenscheme is O-dimensional and it consists of D, 4 = (dld)fl distinct points,
where dim V' = n + 1. In fact, [CS13] shows a stronger condition: whenever Xy is finite, its
degree is D,, 4. However, little is known about which configurations of points, or more generally
which 0-dimensional schemes, may arise as eigenschemes of tensors. For every d, one defines a

variety of eigenconfigurations

Ena={(v1,.. - 3UD, ) € (]P’V)('D"vd) : Xy ={vy,... ,an’d} for some f € SdV}.

Here (PV)(Pr.4) denotes the symmetrized product (PV)*Prd /& D, 4- More generally, one can
define &, 4 as a subscheme of the Hilbert scheme Hilbp, ,(PV) of D,, 4 points in PV
We propose the following very general problem:

Problem 9. Determine equations for &, 4.

In Problem 9, “equations” is to be intended in a broad sense, as Zariski closed conditions.
This problem was investigated in [BGV21, BGV22, BMR23|, which provides partial results
and essentially a full characterization for n = 2, 3.

One can specialize Problem 9 to the case of non-reduced schemes. In this case, even
before determining equations, one can study what are the possible degrees of the irreducible
components of the eigenscheme:
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Problem 10. Let X be a non-reduced scheme which arises as eigenscheme of a tensor. What
are the possible degrees of the irreducible components of X? And what are the schemes that can
arise as trreducible components?

For instance, in the case of matrices, it is known [ASS17] that all the schemes arising as
irreducible components of an eigenscheme are curvilinear.

2.2. Eigenschemes compatibility. As mentioned before, eigenvectors of (non-symmetric)
tensors in V®¢ can be defined with respect to any choice of d — 1 factors. The k-th eigenscheme
of a tensor T € V®? is the eigenscheme defined with respect of the factors different from the
k-th one; more precisely

X[}:{UGPV:Tfv®d:)\vf0rsomeA€CX};
k

here T = v®? denotes the contraction against all but the k-th factor. This gives rise to d (usually)
k
distinct eigenschemes, that must respect some compatibility condition. The eigencompatibility

variety, introduced in [ASS17], records the d-tuples of schemes which can be eigenschemes of a
tensor 1"

EC,q={(X1,...,Xy) € (PV)Prd x ... x (PV)Prd : there exists T € V® with X; = X5 };

and similarly to the variety of eigenconfigurations, one can define the eigencompatibility variety
in the product of d copies of Hilbp, ,(PV'). The projection on any of the d factors surjects EC,, 4
onto &, q. The case d = 2 of matrices is completely understood: its equations are described
in [ASS17, Prop. 3.1], and either projection onto (PV)Pnd = (PV)"*! is birational. Besides
the case of matrices, little is known and already the case of binary forms hides interesting
geometric features. We propose a problem similar to Problem 9:

Problem 11. Determine dimension and equations for EC,, 4.

2.3. Singular vectors of tensors. Similar to eigenvectors, one can generalize to the tensor
setting the notion of singular vector of a matrix. Fix d vector spaces V1, ..., Vy, each endowed
with an inner product (—, —); which allow one to identify V; with V;. Given T'€ V; x --- x Vj
a singular tuple of T" is a d-tuple (v1,...,vq) € V1 X -+ x Vg such that

T o(® R0, ® - Quq) = Ay, for every k=1,...,d.
k

The connection to optimization theory is similar to the case of eigenvalues: a singular tuple
defines a singular point of 7" regarded as a function on the product of spheres Yy, X --- x y,.
The maximal singular value defines a norm, that is called the spectral norm of the tensor.

The number of singular d-tuples for a generic tensor T' € V1 ® - - - ® V; was determined in
[FO14] and given in terms of its generating function. If n; + 1 = dim V;, then a generic tensor
T has c(n) singular tuples where ¢(n) is the coefficient of h7* --- h}? in the polynomial

n n 1
ﬁ (Digha)™ 1 — hypt " '
L= —n

One can define varieties recording sets of singular tuples, similarly to the case of the variety of
eigenconfigurations and the eigencompatibility varieties in the symmetric setting. Problems
analogous to Problem 9 can be studied.

Further, a number of open problems have been proposed regarding the existence of tensors
whose singular tuples have particular properties, for instance being defined over the real
numbers.
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Problem 12. Given real vector spaces Vi,...,Vy with dimV; = n; + 1, does there exist a
tensor T € V1 @ --- ® Vi such that T has c(n) critical points defined over the real numbers?

In the symmetric setting, an analog of Problem 12 was posed in [ASS17], asking whether
there exist real homogeneous polynomials f € SV admitting D,, 4 critical points. This problem
has affirmative answer: in [Koz18|, it was shown that there exist harmonic polynomials having
fully real eigenconfigurations. Little is known in the non-symmetric setting, besides the case of
matrices, where the answer is positive.

2.4. Best low rank approximations. An important connection between optimization theory
and the spectral theory of tensors lies in the characterization of best rank one approximation.
A positive definite quadratic form (—, —) on a real vector space Vg defines a Euclidean norm
|lv]|? = (v,v), hence a distance function dist(v,w) = ||v — w]|?.

Given an algebraic variety X C V, and an element v € V| the distance function naturally
induces a regular function on X defined by distx(—,v) : X — C. If v is generic, the set of
critical points of distx(—,v) on X is finite, it consists of distinct points, and its cardinality
does not depend on the choice of v; the Fuclidean distance degree of X, denoted EDdeg(X)
is the number of critical points of dist(—,v) for a generic choice of v € V' [DHOT16]. If X
coincides with the Zariski closure of the set of its real points, one can show that at least one of
these critical points is real: the real point £ realizing the lowest possible value of dist(v, ) for
& € X is the best approximation of v on X.

In the setting of symmetric tensors, the inner product (—, —) on a vector space V' of dimension
n + 1 naturally induces an inner product on SV, often called the Frobenius inner product.
Denote by 73, the affine cone over the Veronese variety vg(PV) C PS?V. It is easy to prove
that for f € SV, a scalar multiple of the element v? € ¥, 4 is a critical point of disty, ,(—, f)
if and only if [v] is an eigenvector of f. In particular, the results of [CS13] guarantee that
D,,.q = EDdeg(%,4).

Analogously, in the case of arbitrary tensors, inner products (—, —) on spaces V; with
dim V; = n; + 1 induce naturally a Frobenius inner product on Vi ® --- ® V4. Denoting by
“ni1,...my the affine cone over the Segre variety of rank one tensors in P(V; ® --- ® V), one
has a natural correspondence between singular tuples of a tensor 1" and critical vectors of the
distance function distg, ., (=, 7). In this case, the number ¢(n) from [FO14] coincides with
the Euclidean distance degree EDdeg(:-%, ...n,)-

Notice that the above characterizations of the Euclidean distance degree in the tensor setting
concern the distance function from the affine cone over the projective variety of rank one
tensors. One can define an affine version of the Euclidean distance degree as follows: Let X
be the cone over a projective variety X C PV and let H C V be a generic affine hyperplane;
let XH = XNH , which is an affine variety in H. The Euclidean distance degree of X
does not depend on the choice of H, and is called the affine Euclidean distance degree of
X, denoted aEDdeg(X). In general, EDdeg(X) and aEDdeg(X) are different. In the tensor
setting, this notion has been studied in [BPS22] in the context of probability tensors, that are
tensors T' € V1 ® - - - ® V; lying in the affine hyperplane Z(z‘l,...,id)e[nl]x~~~x[nd} tiy,...ig = 1. It is
conjectured [BPS22; Conj. 20| that if T' is a probability tensor with nonnegative coordinates,
then, among its aEDdeg(.77,, ... n,) critical points, there is exactly one with real entries. Hence,
we pose the following problem

Problem 13. Determine the possible numbers of real elements among the aEDdeg(.%,,, .. n,)
critical points of a probability tensor.



GEOMETRY OF TENSORS 9

We point out that the problem of determining the Euclidean distance degree for varieties
different from rational homogeneous varieties is essentially open, other than for special cases.
For instance, it is completely open for secant varieties of Segre and Veronese varieties, already
in small dimension. We propose a problem in a restricted setting:

Problem 14. Determine EDdeg(o2(vg(P))), the Euclidean distance degree for the secant
variety of the rational normal curve in P?,

2.5. Other topics. The spectral norm of a tensor is a quantity of interest in optimization
theory and, unlike the case of matrices, very few methods to compute it are known. In
particular, an important quantity of interest is the best rank one approximation ratio between
the Frobenius norm and the spectral norm. This has been studied from a geometric point of
view in [AKU20| and it is known in very few cases.

This topic can also be studied in a restricted setting. For instance, in [EU23], the distance
function restricted to the variety of rank 2 tensors was studied, and the maximum distance of
a (border) rank 2 tensor from the variety of rank one tensors was determined.

PART 3: GEOMETRIC METHODS IN ALGEBRAIC COMPLEXITY THEORY

Algebraic tasks such as evaluating polynomials, multiplying matrices or solving linear and
polynomial systems are central in several areas of mathematics. Algebraic complexity theory
studies the complexity of performing these tasks, employing tools from combinatorics, algebra,
probability and geometry. We will focus on the task of evaluating polynomials, typically modeled
using algebraic circuits: these are directed graphs encoding an algorithm that evaluates a
given polynomial. Roughly speaking, a polynomial (more precisely a family of polynomials) is
considered easy to evaluate if it admits a small circuit; the meaning of “small” often depends
on the particular complexity class that one examines. Usually, one restricts to special circuits,
reflecting the computational model of interest; in this setting, the fact that a certain family of
polynomial belongs to a given complexity class can be translated into membership into some
algebraic variety, and it can be studied using tools from geometry and representation theory.

For simplicity, we restrict to the homogeneous setting. A p-family is a sequence (f,)nen
where f, € S CNn is a homogeneous polynomial of degree d,, in N,, variables, where d,,, N,,
are polynomially bounded as functions of n. A complexity class is usually defined to be the set
of p-families for which a given measure of complexity is polynomially bounded as functions of
the parameter n indexing the sequence.

3.1. Relations between different measures of complexity. Recall the definition of X-rank
with respect to an algebraic variety X from (1). Two varieties of interest in complexity theory
are the the Veronese variety ¥y 4, already mentioned before, and the Chow variety of products
of linear forms

Chyg={f1---£4€ SCY : for some ¢; € S'V}.

The Chow rank of a homogeneous polynomial f € SYCV, denoted Rey(f), is its rank with
respect to the Chow variety. Correspondingly, one defines complexity classes

VWaring = {(f,) p-family : Ry (f,,) € O(n®) for some s};
VChow = {(f) p-family : Ren(f) € O(n®) for some s};
these are, respectively, the classes of sequences of polynomials with polynomially bounded

Waring and Chow rank. In the computer science community these are sometimes denoted 3AY
and XIIY, although these classes do not necessarily require the polynomials to be homogeneous.
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Another interesting measure of complexity is the iterated matriz multiplication complexity of
a polynomial f € S4CV, defined as follows:

M € cN ® Matq
immC(f) =min{ r: f = M-+ My, for some M; € CYN @ Mat,x, for j=2,...,d—1 ;
M, € cN ® Mat, w1

in other words immC( f) is the smallest r for which f can be written as a product of matrices of
size r whose entries are linear forms. In the complexity theory community, immC(f) is called
the algebraic branching program width of f and the expression of f as product of matrices is
called an algebraic branching program (ABP) for f. The complexity class VBP is

VBP = {(f,) p-family : immC(f,,) € O(n®) for some s}.

For a homogeneous polynomial f, it is clear that Ry (f) > Ren(f) > immC(f). Hence one
has the inclusions VWaring C VChow C VBP. It is known that these inclusions are strict:
the p-family m,, = 1 - - -z, satisfies Ry (my,) = 2"~! [RS11a], whereas Rcp(my,) = 1, showing
(my,) € VChow \ VWaring; the p-family det,, = det(X,,), where X, is a matrix of variables,
satisfies Rcy (dety,) > ¢, where ¢, is a super-polynomial function of n|GKKS13, LST22] and
immC(det,,) < O(n3) [Val79, Tod92], showing (det,) € VBP \ VChow.
One can analogously define border classes, by replacing the complexity measures Ry, Rgp, immC

with their semicontinuous analogue Ry, Ry, immC. We have seen already the definition of
border rank. The border iterated matrix multiplication complexity is defined by

immC(f) = min{r: f = lir% fe for some sequence f. such that immC(f;) < r}.
e—

The corresponding complexity classes are denoted VWaring, VChow, VBP. Again, one imme-
diately has VWaring C VChow C VBP. The same examples as above guarantee that these
inclusions are strict. Little is known about the difference between a complexity class and its
border analogue.

Problem 15. Let C be a complexity class among VWaring, VChow or VBP. Determine

whether C = C.

In fact, even weaker debordering results are of great interest. For instance, the recent
[DDS22] showed the inclusion VChow C VBP; [DGIT22] gives an upper bound for Ry (f) of
the form deg(f) - exp(Ry (f)). We propose a major open problem in this area:

Problem 16. Determine whether VWaring C VChow. More modestly, determine non-trivial
upper bounds for R, (f) in terms of Ron(f).

3.2. Variety of ABPs of small width. Similarly to the setting of secant varieties, the set
IMM, v = {f € PS?V : immC(f) <r}

is closed in the Zariski topology, so that it can be regarded as a subvariety of PSV. This is
the variety of homogeneous polynomials admitting an algebraic branching program (ABP) of
width at most r. When r = 1, this coincides with the Chow variety Chg,. [GGIL22| provides
some equation for IMM,.y, based on intersection theoretic properties of the hypersurface
{f =0} C PV, in connection with other complexity measures on the space of polynomials,
such as slice rank and strength [BDE19]. [AW16] gives a characterization of IMMj 1/, based on
certain degeneracy conditions of restrictions of f. The value of dim IMM,.y can be determined
using the results of [Ges16]. We propose to extend these results for a wider range of values of
r and dim V.



GEOMETRY OF TENSORS 11

Problem 17. Determine equations for IMM,., C PSSV for small values of v and dim V.

The geometric complexity theory program (GCT) [MSO01, MS08] is a proposed approach to
studying the relations between (border) complexity classes via representation theoretic obstruc-
tions. We refer to [BI18| for an extensive introduction to the method which we summarize here
briefly. Usually, varieties X, controlling complexity measures, such as o, (vg(PV)), 0,(Chgv)
and IMM,. v, are GL(V)-varieties, that is varieties closed under the natural action of the
general linear group GL(V). This makes their ideals Z(X,) C Sym(S?V*) and their coordinate
rings C[X,] = Sym(S?V*)/Z(X,) into representations for the group GL(V). In general, if two
projective varieties X, Y satisfy X C Y, then there is a surjection C[Y] — C[X]; moreover this
surjection is graded, and if X,Y are GL(V)-varieties, it is GL(V)-equivariant. For this reason,
given two varieties X, and Y; controlling two GL(V')-invariant (border) complexity measures,
one can prove X, Z Y by showing that there is no surjection C[Y;]s — C[X,]s for some degree
0. Because of the GL(V)-equivariancy, a sufficient condition to guarantee such a surjection
cannot exist is the existence of an irreducible GL(V')-representation occurring in C[X,| with
higher multiplicity than in C[Y;]. An irreducible with the property above is called a multiplicity
obstruction and its existence guarantees X, Z Ys;. The geometric complexity theory program
proposed this approach, and some of its variants, as a method toward proving VNP ¢ VP,
but the same framework can be adapted to separation of other border complexity classes.

However, the results of [[P17, BIP19, GIP17] pose strong restrictions on the complexity
models and the varieties to which this method can possibly be applied successfully. One setting
in which this method has not been yet explored is the one of IMM,.y/.

Problem 18. Implement the GCT approach to the variety of small algebraic branching programs
IMM,.y .

3.3. Other topics. In this section, we did not cover any problem regarding the matrix
multiplication complexity, a central subject in algebraic complexity theory. The research
for lower bounds on the tensor rank of the matrix multiplication tensors has been a major
motivation for the research on equations for secant varieties [LO13, LO15, LMI18]. The use
of geometric methods for upper bounds appears already in [BCLR79], which first motivated
a systematic study of border rank; the most recent upper bounds [CW90, AW21]| are based
on what is known as Strassen’s laser method [Str87|, a mix of geometric, probabilistic, and
combinatorial techniques. Several barriers have been proved for this method, at least in its
original form [AW18, AFG15, CVZ21, BL20]; [HIMS22] proposes a modified approach with
the goal of circumventing such barriers.

PART 4: GEOMETRIC METHODS IN QUANTUM PHYSICS

This final section concerns problems on the geometry of tensors which originate from the
study of entanglement in quantum physics and quantum information theory. The problems
described in this section, however, have strong connections to other topics as well, such as
invariant theory and additive combinatorics; we will briefly mention these connections when
relevant.

Briefly, quantum physics models the state of a quantum system of interest as an element of
a complex vector space, endowed with a Hermitian inner product. The state of a composite
system is described by an element of a tensor space, where each factor is the space corresponding
to one of the components of the composite system. The evolution of the system is described by
the action of a unitary matrix. We refer to [NCO00] for an extensive account of the quantum
formalism and an introduction to quantum information theory.
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From a geometric point of view, we focus on quantum SLOCC operations, which ultimately
correspond to transformations on a tensor space Vi ® --- ® V; induced by the action of
End(V1)x---xEnd(Vy). Hence, much of the theory of entanglement can be studied geometrically,
in terms of orbits and orbit-closures in tensor spaces. To this end, we introduce the notions of
restriction and degeneration of tensors. Given T, S € V} ® - - - ® Vy, we say that T restricts (resp.
degenerates) to S if S € End(Vy) x -+ x End(Vy) - T (resp. S € End(V1) x -+ x End(Vy) - T).
It is a classical fact that the variety End(Vi) x -+ x End(Vy) - T of the degenerations of T
coincides with the orbit-closure of T' under the action of GL(V}) x - -+ x GL(Vy). We will say
that a tensor T restricts or degenerates to a tensor .S even if they do not belong to the same
tensor space: this means that the respective spaces are reembedded into a common space where
the image of T restricts or degenerates to the image of S. For instance, consider the unit tensor
of rank r on d factors, defined by ug(r) =3, 6 ®---®e; € C" ®---® C"; the tensor rank
R(T) (resp. the tensor border rank R(T")) of a tensor 7' € V; ® - - - ® Vj is characterized as the
smallest r such that uy(r) restricts (resp. degenerates) to T'.

4.1. Tensor networks and matrix product states. Tensor networks define a class of
tensors arising via specific tensor contractions which are encoded in the combinatorics of a
weighted graph. They are used in quantum many-body physics because they model desirable
entanglement properties, which find application in holography, quantum chemistry and machine
learning. Specifically, let I' = (v(I"),e(T")) be a graph with set of vertices v(I') = {1,...,d}
and set of edges e(I'), and let m = (m. : e € e(I")) be an assignment of integer weights on the
edges of T, called bond dimensions. One defines a specific graph tensor T(I',m) in a tensor
space W1 ® --- ® Wy; the dimension of the factor W; is determined by the weights of the
edges incident to j; more precisely W; = @), j C™e. Further, given a set of integer weights
n=(nj:j=1,...,n) on the vertices of I, called local dimensions, one defines a set

TNSran

o

={TeC"®---®@C" : T is a restriction of T'(I',m)}

The tensor network variety is TNSan = TNan’no where the closure can be taken equivalently
in the Zariski or the Euclidean topology. We refer to [BLG21] for the details of this construction
and to [CVZ19, CGMZ21]| for generalizations to the case of hypergraphs.

In [BLG21], an upper bound to the dimension of the variety TJ\/’Sﬁhn was given and it was
shown that such upper bound is sharp in a wide range of bond and local dimensions. Moreover,
defining equations for the variety ’77\/:5'{117n were given for some particular cases. We propose
the following problem:

Problem 19. Determine equations for the tensor network variety TNSme. Restrict, if
necessary, to particular classes of graphs I', or particular assignments of bond and local
dimensions.

Interestingly, in the case where I' is a cycle graph Cy, with bond dimensions my, ..., mg,
the graph tensor coincides with the iterated matrix multiplication tensor, which encodes the
multilinear map

MaMuy, : Maty,,; xm, (C) X -+ - X Maty,, , xm,(C) = Maty,, xm,(C)
(Al, . 7Ad—1) — A1 s Ad—l'
In this case, the tensor network variety is known as the variety of matriz product states of

bond dimension m [PGVWCO07|, and it is the subject of a rich line of research. It is a non-
commutative analog of the variety of algebraic branching programs of small width defined in
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Section 3.2; similarly to the case of ABPs, one easily determines a linear-algebraic description
of the variety of matrix product states

TNS G = > trace(MY .- MDY ey @ @ e, : MP)

i1 ig ik

€ Matmk XMEy1 ((C)
(i1,yia) €[n1] % X [ng]

In this case, and more generally in cases where the underlying graph of a tensor network

presents particular symmetries, one is interested in a restricted version of the matrix product

states: if my = --- =mg and ny = --- = ng, one considers the subvariety of TJ\/’SS{{H arising

from collections of matrices which do not depend on the index k. More precisely

MTNS,C;;’fn = Z trace(M;, --- M;,) - e, @ - ® e, + M, € Matyxm(C)
(i1,sig) €] XX [n]

This is the variety of uniform or translation invariant matrix product states with periodic
boundary conditions, and their importance in quantum physics is explained in [PGVWC07,
/WPGCO06]. In [GLWI18|, some equations for this variety are obtained in terms of certain
rank conditions. More equations are obtained in [CMS23], and [DMS22] provides the complete
characterization of the space of linear equations in a restricted setting. A central role in these
results is played by the trace algebra, which allows one to draw strong connections between the
geometry of L{TNSTC,L% and classical results in invariant theory. Many problems remain open in
this area; we propose the following general problem and we refer to [Sey22| for further details.

Problem 20. Study the geometry of the variety of uniform matriz product states. In particular,
use the properties of the trace algebra to systematically determine families of equations.

4.2. Tensor subrank. The subrank of a tensor is a measure of how much a tensor can
be diagonalized by taking linear combinations of its slices in all directions; this notion was
introduced in [Str87] in the study of matrix multiplication complexity, and it is in a sense dual
to the classical notion of tensor rank defined before. Precisely, given T'€ V] ® - -- ® Vy, the
subrank of T is
Q(T) = max{q : T restricts to ugq(q)};
Unsurprisingly, the subrank is not semicontinuous, which motivates the definition of the border
subrank of T, that is
Q(T) = max{q : T degenerates to ug(q)}.

Clearly Q(T') < Q(T) and, by definition, the border subrank is semicontinuous along degen-
erations, in the sense that if S is a degeneration of T then Q(S) < Q(T"). However, it is not
necessarily semicontinuous along arbitrary curves: for instance, if Z is a generic rank one tensor
inC!®---®CY then T, = uy(q) + ¢Z satisfies Q(T;) < g — 1 for generic €, but Tp = uy(q) so
Q(To) = ¢

The subrank is a measure of entanglement in quantum information theory. It controls the
amount of “GHZ-type” entanglement that can be distilled from a quantum state. We refer to
[VC17] for the details.

Usually, lower bounds on the subrank and border subrank are obtained via explicit reductions.
On the other hand, we have only few methods for upper bounds, and they usually rely on
determining some other notion of rank which bounds from above the subrank and the border
subrank; this is the case for geometric rank [KMZ20], slice rank [ST'16], tensor compressibility
values |[LM18], G-stable rank [Der22] and a number of other notions. Although these bounds
have been useful to determine exactly the border subrank (and the subrank) in many cases of
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interest, there is evidence that we cannot expect them to be sharp in general. So we propose
the following problem.

Problem 21. Determine a genuine method for upper bounds on the subrank and border subrank
of a tensor that does not rely on other notions of rank.

In [DMZ22], the value of Q(T') for the subrank for a generic tensor T' € C" ® --- @ C™ was
determined, within a small margin of error. For tensors on three factors, it was shown that

|v3n—2| —5<Q(T) < [v3n —2]. The value of the border subrank of generic tensors is not
known; if '€ C" ® - -- ® C" is generic, it is known Q(T') < n — 1, see e.g. [Cha22].

Problem 22. Determine the border subrank of a generic tensor and give conditions for a
tensor to have border subrank higher than the generic one.

4.3. Stabilizer rank. The notion of stabilizer rank appears in entanglement theory. It is a
measure of the complexity of preparing a given quantum state using certain specific quantum
operations. Let X,Y, Z be the three Pauli matrices, defined by

0 1 0 —2 1 0
x=(1o) r=(0 ) 2=(0 h)
The Pauli group is the subgroup P; C GL2(C) generated by {X,Y, Z}; it is a group of 16
elements. The d-th Pauli group is the group Py C GL(C? ® - -- ® C?) image of Py x --- x P; C
GLg X - -+ x GLy via the natural action of GLQXd on C2%¢,

The Clifford group is the normalizer of P; in the group U ((C2®d) of unitary matrices. It is
infinite, but the quotient over its center is finite; denote this quotient by Cy. There is a natural
action of Cy on P(C? ® --- ® C?). To describe a set of generators for Cy, we introduce two

elements of GLo
1 1 1 1 0
n=gs(1 A )os=(0 7))

CNOT :C*®C? - C?®C?
eg ®eg— ey X eg
egRep—egRey
e1®eg— e ®er
e1Rep— e Reg.

and one of GL(C? @ C?)

Then Cy is generated by (the classes modulo the center of U (C2®d) of) the elements H, S, CNOT
acting on any factor, or pair of factors of C?> @ - - - ® C2.
The set of stabilizer states is

Stabg = {U - (e§") € C*®--- @ C?: U € Cy};
the set Staby C C2®? is finite, and it has 2¢ szl(Qk + 1) elements [Gro06] and its linear span

is the entire space C? ® - -- ® C2.
The stabilizer rank of a state T € C? ® - - - ® C? is defined by

stabR(7T") = min{r : T'= a1y T1 + - - - + o, T, for some T; € Staby, and a; € C};
in other words stabR(7") = Rstap,(T).
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It is in general a hard problem to exhibit explicit states with large stabilizer rank. If
v = ey + V/2eq, it is shown in [PSV22] that stabR(v®%) > ed for some constant c; the slightly

weaker bound stabR(v®4) > % is shown in [LS22].

Problem 23. Prove a super linear lower bound for stabilizer rank.

Since Staby is finite, the set of elements of stabilizer rank bounded by r is an arrangement of
r-dimensional linear spaces. In [LS22], these sets are studied from a geometric and combinatorial
point of view. In particular, the generic stabilizer rank stabRg is defined to be the smallest r
such that S?C? is contained in the span of r elements of Stabg. It is known [QPG21, 1.522] that
stabRg < O(Qd/ 2) and clearly stabRg > d+1; moreover, stabRy is known to be superpolynomial
as a function of d unless P = NP.

Problem 24. Determine non-trivial lower bounds on stabRy.

4.4. Other topics. Tensor network representations of quantum states of interest are desirable
because they allow one to perform tensor operations locally, only considering few factors at the
time. Throughout the years, several methods to do this efficiently have been proposed. One
recent one is based on Metropolis Monte-Carlo contraction, proposed in [SWVCO08, AAPKQl]
in the setting of matrix product states. One can explore whether this method can be extended
to other tensor networks, see e.g. [CRS20].

Another topic of interest, only tangentially touched in these notes, is Strassen’s spectral
theory, which has connections to complexity theory, additive combinatorics and quantum
information. There are several open problem in this area, and we refer to |W722| for a complete
reference.
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