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1. Introduction

1.1. The tropical linear regression problem. The max-plus semifield Rmax is the set of real
numbers, completed by −∞ and equipped with the addition (a, b) 7→ a ⊕ b := max(a, b) and the
multiplication (a, b) 7→ a � b := a + b. A tropical hyperplane in the n-dimensional tropical vector
space Rnmax is a set of vectors of the form

Ha = {x ∈ Rnmax | max
1≤i≤n

(ai + xi) is achieved at least twice} .(1)

Such a hyperplane is parametrized by the vector a = (a1, . . . , an) ∈ Rnmax so that not every ai is
−∞. Tropical hyperplanes are among the most basic objects in tropical geometry. They are images
by the valuation of hyperplanes over non-archimedean fields, and so, they are the simplest examples
of tropical linear spaces and tropical hypersurfaces.

We denote by ⊥ the vector in Rnmax whose entries are all −∞, and let P(Rnmax) be the tropical
projective space, i.e., the quotient Rnmax\{⊥} by the equivalence relation ∼ which identifies tropically
proportional vectors. We shall abuse notation and denote by the same symbol a vector and its
equivalence class in P(Rnmax). The Hilbert projective metric is defined by

‖x‖H := max
i∈[n]

xi −min
i∈[n]

xi

for any x ∈ P(Rnmax). In this note, we address the following tropical analogue of the linear regression
problem: Given a set of finitely many points V ⊂ Rnmax, we look for a best fitting tropical hyperplane
of these points. More precisely, the tropical linear regression problem is formulated as

min
a∈P(Rn

max)
max
v∈V

min
x∈Ha∩Rn

‖v − x‖H .(2)

The Hilbert’s projective distance for vectors x, y ∈ Rnmax, where at least one of them is not ⊥,
is given by ‖x − y‖H , and we set d(⊥,⊥) := 0. The support of a vector x ∈ Rnmax is defined by
suppx := {i ∈ [n] | xi 6= −∞}. Each subset I ⊆ [n] yields a part PI of Rnmax, consisting of vectors
with support I. Observe that d(x, y) is finite if and only if x and y belong to the same part PI .
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Moreover, if I 6= ∅,
d(x, y) = max

i∈I
(xi − yi)−min

i∈I
(xi − yi) .

1.2. Tropical cones. A subset C of Rnmax is a tropical (convex) cone or equivalently a tropical
submodule of Rnmax if it satisfies that x, y ∈ C and λ ∈ Rmax implies λ + x ∈ C and max(x, y) ∈ C.
For any given subset V of Rnmax, we denote by Sp(V) the tropical submodule of Rnmax generated
by V. A tropical polyhedral cone C is a tropical cone which is finitely generated. Equivalently, a
tropical polyhedral cone can be defined externally by

max
j∈[n]

(Aij + xj) ≤ max
j∈[n]

(Bij + xj), i ∈ [m].(3)

A scalar µ is a tropical eigenvalue of a matrix M ∈ Rn×nmax if there exists a vector u ∈ Rnmax, so
that u 6= ⊥ and M � u = µ� u in the tropical sense. The eigenvalue is known to be unique when
the digraph of M is strongly connected, then it coincides with the maximum weight-to-length ratio
of the circuits of the digraph of M . We denote it by λ(M).

1.3. Mean payoff games. We consider zero-sum deterministic games, with perfect information,
defined as follows. There are two players, “Max” and “Min” (the maximizer and the minimizer),
who will move a token on a weighted digraph. We assume this digraph is finite and bipartite: the
node set is the disjoint union of two non-empty sets Smax and Smin, and the arc set A is included
in (Smax × Smin) ∪ (Smin × Smax). The set of states of the game is the set of nodes of the digraph.
We associate a real weight wrs to each arc (r, s).

The two players alternate their actions. When the token is in node i ∈ Smin, Player Min must
choose an arc (i, j) in the digraph, meaning he moves the token to node j, and pays wij to player
Max. When Player Min has no possible action, that is, when there are no arcs of the form (i, j)
in the digraph, the game terminates, and Player Max receives +∞. Similarly, when the token is
in node j ∈ Smax, Player Max must choose an arc (j, i) in the digraph. Then he moves the token
from node j to node i, and receives wji from Player Min. When Player Max has no possible action,
that is there are no arcs of the form (j, i) in the digraph, the game terminates, and Player Max
receives −∞. If the game does not terminate before time k, the history of the game is described by
a sequence of nodes ı̄ = i0, j1, i1, . . . , jk, ik, belonging alternatively to Smin and Smax, and the total
payment received by Player Max is given by

Rkı̄ = wi0j1 + wj1i1 + wi1j2 + · · ·+ wjkik .

If the game terminates by k, we set Rkı̄ = ±∞ depending on the player who had no available action.
The following assumption requires Player Min to have at least one available action in every state:

Assumption 1. For all i ∈ Smin, there exists j ∈ Smax such that (i, j) is an arc of the digraph of the
zero-sum deterministic game.

In this way, we always have Rkı̄ ∈ R ∪ {−∞}. We shall also consider the dual assumption.

Assumption 2. For all j ∈ Smax, there exists i ∈ Smin such that (j, i) is an arc of the digraph of the
zero-sum deterministic game.

A strategy of a player is a map which associates to the history of the game an action of this player.
Assuming that Player Min plays according to strategy σ, and that Player Max plays according to
strategy τ , we shall write Rkı̄ = Rkı̄ (σ, τ) to indicate the dependence on these strategies. It follows
that the game in horizon k starting from node ı̄ has a value vkı̄ and that Players Min and Max have
optimal strategies σ∗ and τ∗ respectively, i.e.,

Rkı̄ (σ, τ∗) ≤ vkı̄ = Rkı̄ (σ∗, τ∗) ≤ Rkı̄ (σ∗, τ)
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for all strategies σ, τ . Moreover, the value vector vk := (vki )i∈Smin is determined by

vk = T (vk−1), v0 = 0

where T : Rnmax → Rnmax is the Shapley operator, defined, for i ∈ Smin, by

Ti(x) = min
j, (i,j)∈A

(wij + max
l, (j,l)∈A

(wjl + xl)).(4)

Assumption 1 and Assumption 2 guarantee that the above minimum and maximum are never taken
over an empty set, i.e., when both assumptions hold, T sends Rn to Rn.

The mean payoff vector is defined by

χ(T ) := lim
k→∞

T k(0)/k = lim
k→∞

vk/k .

By [Koh80], the limit does exist, and that χ(T ) ∈ Rn when Assumption 1 and Assumption 2 hold.
The problem determining if χı(T ) ≥ 0 belongs to the class NP ∩ coNP [ZP96], and no polynomial
time algorithm is known.

1.4. Perron-Frobenius tools. The spectral radius of a Shapley operator T is defined as

ρ(T ) = sup{λ ∈ Rmax | ∃u ∈ Rnmax, u 6= ⊥, T (u) = λ+ u} .(5)

Variants of this spectral radius are given by the Collatz-Wielandt number cw defined by

cw(T ) = inf{λ ∈ R | ∃u ∈ Rn, T (u) ≤ λ+ u} ,(6)

and by the dual Collatz-Wielandt number

cw′(T ) = sup{λ ∈ Rmax | ∃u ∈ Rnmax, u 6= ⊥, T (u) ≥ λ+ u} .(7)

For all x ∈ Rnmax, we define topx := maxi∈[n] xi and

χ(T ) := lim
k

top(T k(0))/k = inf
k≥1

top(T k(0))/k .

The following result, which follows from [AGG12], provides several spectral characterizations of
this upper mean payoff.

Theorem 1. Let T : Rnmax → Rnmax be a Shapley operator. Then

cw′(T ) = ρ(T ) = χ(T ) = cw(T ) ,(8)

and the suprema in (5) and (7) are always achieved.
Moreover, if the restriction of T to Rn is piecewise affine, and if ρ(T ) 6= −∞, then the infimum

in (6) is also achieved.

2. Inner radius of a tropical polyhedron defined by generators

For any subset W of Rnmax, we define the inner radius of W, denoted in-rad(W), as

sup{r ≥ 0 | there is a Hilbert ball B(x, r) for some x ∈ Rn such that B(x, r) ⊆ Sp(W)}.

More generally, for all non-empty subsets I ⊂ [n], we define the relative inner radius of W, denoted
by in-radI(W), as the supremum of the radii of the Hilbert balls centered at a point in the part PI
of Rnmax and included in Sp(W). Recall that a tropical polyhedral cone is given by

Col(V ) = {V � x | x ∈ Rpmax}

for some V ∈ Rn×pmax. We shall make the following assumption.

Assumption 3. The matrix V has no identically −∞ rows and no identically −∞ columns.
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Set E = {(i, k) ∈ [n]× [p] | Vik 6= −∞}. Then the Shapley operator T : Rnmax → Rnmax is given by

Ti(x) = inf
k∈[p],(i,k)∈E

[
− Vik + max

j∈[n],j 6=i
(Vjk + xj)

]
.(9)

For a ∈ Rn, the tropical hyperplane Ha divides Rnmax into n sectors (Si(a))i∈[n], defined by

(10) Si(a) := {x ∈ Rnmax | ∀j ∈ [n], xi + ai ≥ xj + aj} .
The vector −a, which is unique up to an additive constant, is called the apex of Ha. The following
theorem builds the connection between the inner radius of Col(V ) and the spectral radius of T .

Theorem 2. [AGQS21, Theorem 6] Let T be the Shapley operator associated to the matrix V ∈ Rn×pmax

defined in (9). Then ρ(T ) ≤ 0. Moreover,

−ρ(T ) = in-rad(Col(V )).

If ρ(T ) is finite, a maximal Hilbert ball included in Col(V ) ∩ Rn is given by B(−a,−ρ(T )) where a
is any vector in Rn such that T (a) ≤ ρ(T ) + a.

As a corollary, we recover the following statement which fits our intuition, i.e., a finitely generated
polytope has empty interior if and only if it is contained in a hyperplane.

Corollary 3 (Compare with Theorem 4.2 of [DSS05]). The set Col(V )∩Rn is of empty interior if
and only if Col(V ) is included in a tropical hyperplane.

3. The strong duality theorem for tropical linear regression

Let V = {v(1), · · · , v(p)} ⊂ P(Rnmax) be a finite subset of the tropical projective space, and
V ∈ Rn×pmax be the matrix whose columns are given by some representatives of v(1), · · · , v(p). Recall
that a one-sided Hausdorff distance from a set A ⊆ P(Rnmax) to a set B ⊆ P(Rnmax) with respect to
the Hilbert projective metric is given by

distH(A,B) := sup
a∈A

distH(a,B) , with distH(a,B) := inf
b∈B

d(a, b) .(11)

Then the tropical linear regression problem reads as

(12) inf
a∈P(Rn

max)
distH(V,Ha) .

The following theorem presents a strong duality result between a best tropical hyperplane ap-
proximation of a set V of points and the largest inner balls contained in Sp(V), namely the inner
radius geometrically characterize the distance from V to its best fitting tropical hyperplane.

Theorem 4 (Strong duality). [AGQS21, Theorem 20] We have

(13) min
b∈P(Rn

max)
distH(V,Hb) = rin

V = sup{r ≥ 0 | ∃a ∈ Rn, B(a, r) ⊆ Sp(V)}.

The minimum is achieved by any vector b ∈ P(Rnmax) such that T (b) ≥ ρ(T ) + b. Moreover, if
rin
V is finite, the supremum is achieved by a ball B(−c, rin

V ) where c ∈ Rn is any vector such that
T (c) ≤ ρ(T ) + c.

Given a hyperplane Hb, we call witness point of Hb any point p in V such that the distance
from p to the hyperplane Hb equals the distance from the set V to this hyperplane. By Theorem 2
and Theorem 4, we obtain the following close relation between spectral radius of T and the tropical
linear regression.

Theorem 5 (Optimality certificates). [AGQS21, Theorem 22] For a ∈ Rn, then the following
assertions are equivalent:

(1) T (a) = ρ(T ) + a;
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(2) The hyperplane Ha admits a witness point in each sector, meaning that ∀i ∈ [n], ∃k ∈
[p], v(k) ∈ Si(a) and distH(v(k),Ha) = distH(V,Ha).

Moreover, if these assertions hold, then ρ(T ) = −distH(V,Ha), Ha is an optimal solution of the
tropical linear regression problem, and B(−a,distH(V,Ha)) is a Hilbert ball of maximal radius in-
cluded in Sp(V).

Due to Theorem 5, it would be interesting and useful to investigate the situations where T has a
finite eigenvector with respect to its spectral radius. Below is a special case where we can guarantee
this property of T .

Proposition 6. [AGQS21, Proposition 23] Suppose that all the vectors v ∈ V have finite entries.
Then, the operator T has a finite eigenvector a.

Theorem 5 also implies the following corollary which reduces the tropical linear regression problem
to finding the spectral radius of T .

Corollary 7. The tropical linear regression problem is polynomial time Turing-equivalent to mean
payoff game.

V·1V·2

V·3

V·4

V·5 V·6

V·7

V·8 V·9

x1 x2

x3

0

−a
Ha

Figure (1) The inner ball of a column space Col(V ) and the linear regression of
the columns of V .

4. Tropical linear regression with sign or type patterns

4.1. Tropical linear regression with signs. Given I, J ⊂ [n] such that I, J 6= ∅, I ∪J = [n] and
I ∩ J = ∅ and a ∈ P(Rnmax), we define the signed tropical hyperplane of type (I, J) by

(14) HIJa := {x ∈ Rnmax | max
i∈I

(ai + xi) = max
j∈J

(aj + xj)}.

Given a finite set V ⊂ Rnmax, of cardinality |V| = p, the signed tropical linear regression problem
of type (I, J) consists in finding the best approximation of V by a signed hyperplane of type (I, J):

(15) min
a∈P(Rn

max)
distH(V,HIJa ) .
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U·1U·2

U·3 U·4
x1 x2

x3

0

Hc

−a
Ha

−b
Hb

Figure (2) A column space Col(U) (light and dark gray regions) with multiple
hyperplanes that are optimal solutions of the tropical linear regression problem, and
multiple inner balls of maximal radius, but a unique optimal hyperplane with witness
points in each sector, corresponding to the finite eigenvector a = (0, 0, 1)> of T and
to the inner ball in dark gray.

Let M be a closed tropical cone of Rnmax and x ∈ Rnmax. The projection PM (x) of the point x
onto M [CGQ04] is defined by

(16) PM (x) := max{z ∈M | z ≤ x} .
The theorem below guarantees that the Hilbert distance from x to M is achieved by the projection
PM (x) of x onto M .

Theorem 8. [CGQ04, Theorem 18] Given a closed tropical semimodule M ⊂ Rnmax and x ∈ Rnmax,
we have:

distH(x,M) = d(x, PM (x)) .

In the sequel, we suppose that the following Assumption 4 holds.

Assumption 4. We suppose that for each l ∈ [n], there exists v ∈ V, such that vl 6= −∞.

We now introduce the operator T IJ : Rnmax 7→ Rnmax, defined by

(17) T IJl (x) :=

{
infv∈V,vl 6=−∞{−vl + maxj∈J(vj + xj)}, if l ∈ I ,
infv∈V,vl 6=−∞{−vl + maxi∈I(vi + xi)}, if l ∈ J .

Similar to Theorem 4, we now derive a strong duality theorem for signed tropical regression.

Theorem 9. [AGQS21, Theorem 34] We have

(18) min
a∈P(Rn

max)
distH(V,HIJa ) = −ρ(T IJ) = sup{r ≥ 0 | ∃w ∈ Rn, BIJ(w, r) ⊂ Sp(V)} .

The minimum is achieved by any vector b ∈ P(Rnmax) such that T IJ(b) ≥ ρ(T IJ) + b. Moreover, if
ρ(T IJ) is finite, the supremum is achieved by a ball B(c, ρ(T IJ)) where c ∈ Rn can be deduced from
any vector u such that T IJ(u) ≤ ρ(T IJ) + u.
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Remark 1. When the set I = {i} is of cardinality one, the regression problem for the signed
hyperplane (14) has the following special form:

min
a∈Rn

max
v∈V
|vi − (max

j 6=i
aj − ai + vj)| .(19)

This can be solved in a direct way [MCT21], avoiding the recourse to mean payoff games. Indeed,
(19) reduces to the following “one-sided” tropical linear regression problem. Given sample points
(x(k), y(k)) in Rn × Rm, for k ∈ [p], compute

min
A

max
k∈[p]
‖y(k) −Ax(k)‖∞ ,(20)

where the minimum is taken over tropical matrices A of size m×n, and the product Ax(k) is under-
stood tropically. Up to a straightforward duality, this problem was solved in [But10, Theorem 3.5.2],
the result being attributed there to Cuninghame-Green [CG79]. Alternatively, this solution may be
recovered by combining [CF00, Coro. 1] with the explicit formula of the tropical projection [CGQ04,
Th. 5]. More precisely, define the matrix Ā ∈ Rm×n by Āij := mink∈[p] y

(k)
i − x(k)

j , so that Ā is
the maximal matrix such that Ax(k) ≤ y(k) for all k ∈ [p]. Let δ := maxk∈p ‖y(k) − Āx(k)‖∞, and
Aopt
ij = Āij +δ/2. Then, Aopt is the greatest optimal solution. It can be computed in O(mnp) arith-

metic operations. By specializing this formula, one can solve (19) in O(np) arithmetic operations.
We refer the reader to [MCT21] for more information, and for the solution of further problems of
this category.

4.2. Tropical linear regression with type information. Suppose the set of points V is the
disjoint union V = ∪i∈[n]Vi, where each Vi is non-empty. We shall say that the points of Vi are of
type i ∈ [n]. Note that the set of types is the same as the set of indices of vectors. For each type
i ∈ [n], we consider the signed hyperplane:

Hia := H{i}{i}ca = {x ∈ Rnmax | ai + xi = max
j 6=i

(aj + xj)} .

The typed tropical linear regression problem associated to the partition V = ∪i∈[n]Vi is defined as

(21) min
a∈P(Rn

max)
max
i∈[n]

distH(Vi,Hia) .

Assume in the sequel that Assumption 4 holds. For each type i ∈ [n], consider the Shapley
operator T ty,i : Rnmax → Rnmax, given by (17) where the type considered is (I, J) = ({i}, {i}c):

(22) T ty,i
l (x) :=

{
infv∈Vi,vi 6=−∞{−vi + maxj 6=i(vj + xj)}, if l = i ,
infv∈Vi,vl 6=−∞{−vl + vi}+ xi, if l 6= i .

Consider now the Shapley operator T ty : Rnmax → Rnmax given by the infimum of the operators
T ty,i, i ∈ [n]:

(23) T ty
l (x) := min

i∈[n]
T ty,i
l (x) .

Similar to Theorem 5, we obtain the equivalence between the typed tropical linear regression
problem and the problem of calculating the spectral radius of T ty.

Theorem 10. [AGQS21, Theorem 36] We have

min
a∈P(Rn

max)
max
i∈[n]

distH(Vi,Hia) = −ρ(T ty) .

Moreover, the minimum is achieved by any vector a ∈ P(Rnmax) such that T ty(a) ≥ ρ(T ty) + a.
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Remark 2. Typed tropical linear regression should be compared with the tropical SVM problem
introduced in [GJ08]. In the tropical SVM setting, we have a partition of the set of points in n
color classes, Vc1 , . . . ,Vcn , and we are looking for a tropical hyperplane Ha, and for a permutation
σ of {1, . . . , n} such that for all i ∈ [n], all the points of color ci are in the same sector Sσ(i)(a). In
other words, we want the tropical hyperplane to separate the n color classes. This is not possible
in general, so one needs to consider metric versions, modelling the minimization of classification
errors [TWY20]. A possible metric formulation, in the spirit of the present approach, would be to
consider

min
σ∈Sn

min
a∈Rn

max
i∈[n]

distH(Vi, Sσ(i)(a)) (Metric Tropical SVM)(24)

whereSn denotes the symmetric group on n letters. By comparison with (21), we see that we have in
addition a minimization over the symmetric group, but the subproblem with a fixed permutation σ
arising in the SVM problem is simpler than the analogous problem of typed tropical linear regression,
since the sector Sσ(i) is convex, whereas the set Hia arising in (21) is not a convex one.

5. Algorithmic aspects

Considering the strong duality result, Theorem 4, and the result on the existence of witness
points Theorem 5, the key algorithmic issues are:

(i) to compute the upper mean payoff, ρ(T ) (which is the opposite of the value of the tropical
linear regression problem);

(ii) to decide whether there is a finite eigenvector u ∈ Rn such that T (u) = ρ(T ) + u, and to
compute such an eigenvector (when this is so, −u is the center an an optimal ball included
in Sp(V) and the apex of an optimal regression hyperplane);

(iii) to find a sub-eigenvector b ∈ (Rmax)n \ {⊥}, satisfying T (b) ≥ ρ(T ) + b (then, Hb is an
optimal regression hyperplane);

(iv) to find a super-eigenvector c ∈ Rn satisfying T (c) ≤ ρ(T ) + c (then, −c is the center of an
optimal ball included in Sp(V).

Problems (i)–(iv) will be solved simultaneously as soon as we know an invariant half-line of T .
More generally, an algorithm which returns an optimal policy σ of Player Min, i.e., a policy such
that χ(T ) = χ(T σ), can be used to produce a finite vector c ∈ Rn such that T (c) ≤ χ(T ) + c,
by reduction to a tropical eigenvalue problem. Moreover, any algorithm which returns an optimal
policy τ of Player Max, i.e., a policy such that χ(T ) = χ(τT ), can be used to produce a vector
b ∈ Rnmax \ {⊥}, satisfying T (b) ≥ ρ(T ) + b.

We refer the reader to [Cha09] for a comparative discussion of mean payoff game algorithms.
The main known algorithms include the pumping algorithm of [GKK88], value iteration [ZP96],
and different algorithms based on the idea of policy iteration [BV07, Sch08, DG06]. In particular,
the algorithm of [DG06] returns an invariant half-line. The policy iterations algorithms [BV07,
DG06] were reported in [Cha09] to have the best experimental behavior, although policy iteration
is generally exponential [Fri09].

For the application to tropical linear regression, we often know in advance that the operator T
has a finite eigenvector. Then, one can use another algorithm, projective Krasnoselkii-Mann value
iteration [GS20], which is straightforward to implement and still effective. Starting from a vector
v0 = (0, · · · , 0)>, this algorithm computes the following sequence:

ṽk+1 = T (vk)− (maxi∈[n] T (vk)i)e,(25)

vk+1 = (1− γ)vk + γṽk+1.(26)

where e = (1, · · · , 1)> ∈ Rn, and γ ∈ (0, 1) is fixed, 1−γ being interpreted as a damping parameter.
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A direct computation gives us the number of arithmetic operations we need for the projective
Krasnoselkii-Mann algorithm.

Proposition 11. [AGQS21, Proposition 37] The operator T can be evaluated in O(|E|) arithmetic
operations.

We set:
W := max

v∈V
‖v‖H .

The complexity of the approximate optimality certificate is given below.

Corollary 12. Suppose that V ⊂ Rn is of cardinality p. Then, an ε-approximation of the inner
radius of Col(V ), as well as vectors v, z ∈ Rn satisfying BH(v, in-rad(V)−ε) ⊂ V and distH(V,Hz) ≤
in-rad(V) + ε can be obtained in O(npW/ε) arithmetic operations.

6. Open problems

Several open problems related to the present work arise when changing either the class of metrics
or of tropical spaces.

For instance, we may replace the Hilbert metric by the Lp-projective metric, i.e., the metric
obtained by modding out the Lp normed space Rn by the action of additive constants, or by
replacing the Hausdorff distance in (11) by a Lp type distance, for p ∈ [1,∞). Approaches based
on mixed linear programming, or on local descent, have been proposed in [YZZ19, PYZ20, Hoo17]
in some specific cases.

Another generalization consists in replacing hyperplanes by tropical linear spaces of a codimension
not necessarily 1. Recall that the tropical Grassmannian Grtrop

k,n can be defined as the image by
a non-archimedean valuation of the Grassmannian Grk,n(K) over an (algebraically closed) non-
archimedean field, under the Plücker embedding, see [SS04, FR15]. In this way, an element of

Grtrop
k,n is represented by its tropical Plücker coordinates p = (pI) ∈ R(nk)

max. This vector yields a
tropical linear space L(p), defined by

L(p) =
⋂
I

{x ∈ Rnmax | max
i∈I

(pI\{i}) + xj) is achieved at least twice} ,

where the minimum is taken over all subsets of [n] of cardinality k + 1. When k = n− 1, V (p) is a
tropical hyperplane. Hence, a general version of tropical linear regression problem can be written
as

min
p∈Grtropk,n

max
v∈V

min
x∈L(v)

‖v − x‖H .(27)

We solved here this problem when k = n − 1. When k = 1, L(p) is reduced to a single point, and
it is not difficult to see that (27) reduces to a linear program. We leave it as an open question to
solve this problem when 1 < k < n− 1. The same problem may be considered when p is a valuated
matroid, or when it is inside the image of the Stiefel map [FR15], meaning that p is given by the
maximal tropical minors of a matrix. A version of the latter problem (with a L1-type error) is
considered in [YZZ19]. One may also replace the linear space L(p) by the column space of a tropical
matrix A, which boils down to finding a best approximation by a tropical polyhedral cone with a
fixed number of vertices, see [Hoo17, PYZ20].

Another open question is to characterize the Boolean patterns of V which guarantee that the
operator T has a finite eigenvector.
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