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Abstract. In this brief report, we discuss the applications of non-negative factorizations explored during the
“AGATES: Tensors in statistics, optimization and machine learning” semester. We provide an
overview of non-negative tensor factorizations and their applications across diverse fields.
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1. Introduction. Tensors have become more common in recent years because they offer
a natural and powerful way to represent complex and high-dimensional data structures that
arise in many fields, including computer vision, natural language processing, neuroscience,
genomics, recommender systems, and social network analysis [17, 22, 26, 32, 10, 21, 33, 15].
Tensors can capture the interactions between multiple modes of data, such as time, space,
and frequency. They can extract meaningful patterns, relationships, and dependencies that
may be difficult to discover using traditional matrix-based methods. As a result, tensor-based
methods have become an increasingly important tool for data analysis and machine learning in
many fields, and are likely to grow in importance as the complexity and scale of data increase.

Several matrix-based techniques have been employed for analyzing multi-dimensional data.
One approach is to unfold the data into a single large matrix, while another method is to slice
it into multiple matrices before applying matrix factorization [17]. However, these techniques
do not fully utilize the intrinsic multi-way structure of the data, resulting in the loss of signif-
icant information regarding the interplay between different modalities. Tensor factorizations,
as a multi-way extension of matrix factorizations, address this issue by preserving the multi-
way structure of the data, allowing for a more accurate representation of the data and a
better identification of latent features. Popular tensor decomposition methods include Cande-
comp/Parafac, Tucker, and their variants, which can extract latent factors, discover patterns,
and reduce the dimensionality of tensor data [17]. We can place certain limitations on the
models depending on their intended usage. For many applications, imposing a non-negativity
restriction is common practice as it can enhance the interpretability of the model.

In this report, we will focus on non-negative tensor factorization (NTF) which is a multi-
way extension of non-negative matrix factorization (NMF). Non-negative Matrix Factorization
has a rich history spanning over 40 years, originally referred to as positive matrix factoriza-
tion or non-negative rank factorization [5, 6, 23]. NMF gained significant popularity when
Lee and Seung [20] demonstrated its ability to decompose images of visual objects into mean-
ingful parts, effectively “learning the parts of objects”. Since then, NMF has been widely
applied in various fields including image processing, audio signal processing, text mining, and
bioinformatics, for purposes such as clustering, feature extraction, and pattern recognition
[7, 13].
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Figure 1.1. CP decomposition of a 3-way tensor X

However, NMF is limited to handling two-dimensional data, while NTF can handle multi
dimensional data. As previously discussed, applying NMF to higher-dimensional arrays can
result in the loss of interactions between different modalities. The question of whether NMF is
unique is closely related to whether the underlying latent factors are the sole interpretation of
the data or if alternative interpretations are possible. However, NMF is generally non-unique,
meaning that there can be multiple sets of factor matrices that can represent the same data
[13]. Additional constraints can be added to help make the factorization unique [28, 24]. On
the other hand, NTF is unique under milder conditions [7].

1.1. Notation and Preliminaries. We will introduce the key concepts and notations re-
lated to tensors, which will serve as the foundation for the rest of the paper. Most of our
notation is borrowed from [17].

Tensors are multi-dimensional (multi-way) arrays, which extend the matrices to higher
dimensions. The number of dimensions (modes or ways) of a tensor is referred to as its order.
Tensors with an order of 1 are vectors, and those with an order of 2 are matrices. Tensors
with an order greater than 2 are referred to as higher-order tensors. Throughout this paper,
we use lowercase letters x ∈ Rp to represent vectors, uppercase letters X ∈ Rp×q to represent
matrices and capital calligraphic letters X ∈ Rp1×p2×...×pd to represent higher-order tensors.
We denote the (i1, i2, . . . , id)-th entry of an order-d tensor X ∈ RI1×I2×...×Id as Xi1i2...id .

The Frobenius norm of a tensor is similar to the matrix Frobenius norm, as it is defined
as the square root of the sum of the squares of all its elements:

(1.1) ∥X∥F =

√√√√ I1∑
i1=1

I2∑
i2=1

. . .

Id∑
id=1

X 2
i1i2...id

.

A rank-1 matrix X ∈ Rp×q can be written as an outer product of two vectors u ∈ Rp and
v ∈ Rq such that X = u ⊗ v = uvT . Similarly , a rank-1 tensor X ∈ RI1×I2×...×Id can be
expressed as the outer product d vectors, i.e., X = u1⊗u2⊗ . . .⊗ud, ui ̸= 0 ∈ RIi , 1 ≤ i ≤ d.
Such rank-1 tensors are called simple or pure. The process of decomposing a tensor into
the sum of rank-1 tensors is called tensor decomposition, which is an extension of the con-
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cept of matrix factorization. There are many different tensor decomposition methods, such
as the Canonical Polyadic (CP) decomposition, the Tucker decomposition, the PARAFAC2
decomposition, and the Hierarchical Tucker decomposition, among others [17, 8]. Canonical
Polyadic (CP) decomposition, also known as Parallel Factor Analysis(PARAFAC), is a com-
mon method for decomposing tensors. It aims to express a tensor as a sum of rank-1 tensors.
For a tensor X ∈ X ∈ RI1×I2×...×Id , CP decomposition can be written as:

(1.2) X ≈
R∑

r=1

λra
(1)
r ⊗ a(2)r ⊗ . . .⊗ a(d)r

where λr ∈ R and a
(i)
r ∈ RIi , 1 ≤ i ≤ d, 1 ≤ r ≤ R. The smallest such integer r is called

the rank (real rank) of the tensor. For a tensor X ∈ RI1×I2...×Id , the Tucker decomposition
can be written as:

(1.3) X =

R1∑
i1=1

R2∑
i2=1

. . .

Rd∑
id=1

Gi1,i2,...,ida
(1)
i1

⊗ a
(2)
i2

⊗ . . .⊗ a
(d)
id

+ E ,

where A(i) = [a
(i)
1 . . . a

(i)
Ri
] ∈ RIi×Ri is the factor matrix along the i−th mode, Ri ≤

Ii, 1 ≤ i ≤ d. The error-tensor E has the same size as the original tensor. The reduced core
tensor G ∈ RR1×R2×...×Rd can be considered as “generalized singular values” as it gives the
multilinear relations between different modalities. We can place certain limitations on the
core and factor matrices depending on their usage. The CP decomposition can be viewed as
a specific instance of the Tucker decomposition, where R1 = R2 = . . . = Rd and Gi1,i2,...,id ̸= 0
only when i1 = i2 = · · · = id (core is super-diagonal).

The optimization problem given in Equation (1.3) is typically solved using iterative algo-
rithms, such as multiplicative updates, alternating least squares, or gradient descent [17, 1, 29].
These algorithms iteratively update the factor matrices and vectors until convergence. Clas-
sical tensor decomposition methods rely on maximum likelihood estimation (MLE), which
provides a single-point estimate of the underlying parameters and does not account for pa-
rameter uncertainty [25, 12]. MLE can also be sensitive to outliers and may not be robust
to deviations from the assumed distributional form. Bayesian approaches for higher-order ar-
rays have additional advantages over MLE, such as incorporating prior knowledge, performing
model selection, and quantifying uncertainty in the parameter estimates [25, 12]. Although
probabilistic approaches are promising, their details are beyond the scope of this report.

2. Applications of Non-Negative Tensor Factorizations. Non-negative tensor factoriza-
tion (NTF) is a powerful method for decomposing high-dimensional data into a set of inter-
pretable latent factors that capture the underlying patterns in the data [15]. NTF enforces
non-negativity constraints on both the core tensor and the latent factors in Equation (1.3).
This constraint is especially useful in applications such as image and signal processing, where
the factors represent physical quantities that must be non-negative. The focus of this section
will be primarily on the applications of tensor methods in image processing and genomics.
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Figure 1.2. Examples for 3-way tensors.a)Colored images.b) Multi-tissue and multi-individual gene expres-
sion data (Image source: [32]). c) Perturbational dataset for drug, cell line, and gene interactions.

2.1. Image Processing. In image processing, NTF can be used for image compression,
denoising, and feature extraction [33].

Let At, t = 1, ..., k be training images of dimension n ×m. Non-negative Matrix Factor-
ization is a commonly used technique to decompose the training images of an object class into
a basis of local parts. The first step is vectorizing the images. The V be the (n × m) × k
matrix whose columns correspond to vectorized images. Then NMF factorizes V such that:

(2.1) V ≈ WH, W ≥ 0, H ≥ 0.

The columns of W form the basis factors (latent factors) and due to non-negative con-
straint, both the basis factors and mixing coefficient tend to be sparse.

However, vectorizing images results in the loss of local image structure or spatial redun-
dancy, hence using NMF on the vectorized image may not yield the underlying generative
parts, even in the case of a perfect fit.

For the tensor approach, we do not vectorize images. We will form a tensor X of size
(n × m) × k such that X [:, :, i] = Ai, 1 ≤ i ≤ k. We want to factorize X and consider the
following least-squares problem:

(2.2) minui,vi,wi ||X −
R∑
i=1

ui ⊗ vi ⊗ wi||F .

such that ui, vi, wi ≥ 0, 1 ≤ i ≤ R. We get three-factor matrices: U = [u1, u2, ..., uR], V =
[v1, v2, ..., vR],W = [w1, w2, ..., wR]. We can easily capture the approximation to our 2D images
as:

(2.3) At = UΛtV
T ,where Λt = diag(w1t, w2t, . . . , wrt).

In general, NMF is not unique. Additional constraints can be added to help make the
factorization unique, e.g., sparsity or minimum determinant [28, 24]. On the other hand, NTF
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Figure 2.1. In [11], a set of 256 images from the Swimmer Library are used to compare the factors
generated by Nonnegative Matrix Factorization (NMF) and Nonnegative Tensor Factorization (NTF) methods.
The sample image is presented in the top row, with the NMF factors displayed in the middle row and the NTF
factors in the bottom row. The NMF factors reveal ghosts of the invariant parts, particularly the torso, which
contaminates the sparse representation.

is unique under milder conditions [7]. Both NMF and NTF have the potential to produce
sparse factor matrices due to the non-negativity constraint. However, NTF has the added
benefit of being a separable decomposition, factors are more compressed than NMF factors.

In [11], a comparison of NMF and NTF methods is presented using a Swimmer image
set consisting of 256 images of dimensions 32 x 32. Each image contains a central “torso”
of 12 pixels and four “limbs” of 6 pixels, which can be in one of four positions. The NMF
method, which attempts to find 17 factors running over the image set, successfully resolves
the local parts but fails on the invariant torso, which appears in the same position throughout
the entire set and thus appears as a “ghost” in all the factors (Figure 2.1). In contrast, the
NTF method provides a unique factorization and correctly resolves all 17 parts, including the
invariant torso (Figure 2.1).

Below is a comparison table for the properties of NMF and NTF for images:

NMF NTF

Representation Vectorizes images It represents the images the
collection as a 3-way array

Uniqueness Not unique Unique under mild conditions

Sparse Yes (can result in sparse factors) Yes (can result in sparse factors)

Separable Not separable Separable
Table 2.1

Comparision of NMF and NTF for image processing
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3. Genomics. NTF is a widely-used tool in genomics for analyzing large-scale data sets,
including microarrays, single-cell RNA sequencing data, and bulk-RNA sequencing data [27,
16, 32]. These data sets typically consist of gene expression values across multiple samples,
each representing a different biological condition or state. By applying NTF to these data
tensors, researchers can identify the biological factors contributing to gene expression patterns
observed across samples.

The non-negativity constraint of NTF is particularly useful in genomics, as it ensures that
the resulting factor matrices contain only positive values corresponding to gene expression
levels. This constraint allows researchers to interpret the factor matrices as representing
biologically relevant processes, such as metabolic or signaling pathways. In addition, NTF is
capable of handling missing or noisy data, which are commonly encountered in genomic data
sets [3, 9]. NTF can also identify co-regulated genes or co-occurring mutations, providing
insights into the genetic mechanisms underlying disease [27].

3.1. Multi-Tissue Multi-Individual Genomics Data. A typical multi-tissue experiment
collects gene expression profiles from different individuals in a number of different tissues, and
variation in expression levels often results from complex interactions among genes, individuals,
and tissues.

Clustering has emerged as a valuable technique for identifying hidden patterns in high-
dimensional expression data. Conventional approaches such as K-means, principal compo-
nent analysis (PCA), and t-distributed stochastic neighbor embedding (t-SNE) have been
commonly used for this purpose [32, 30]. However, these methods rely on the assumption
that gene expression patterns remain consistent across different contexts or that samples are
independent and homogeneous and they arrange the high-dimensional data into matrices.

Structuring the high-dimensional genomics data as matrices poses several challenges [19,
32]:

• It may limit the ability to identify tissue-specific and individual-specific patterns.
• Inferring gene modules separately for each tissue could overlook shared characteristics
among tissues and hinder the identification of differentially-expressed genes.

• Disregarding individual heterogeneity, including biological factors such as race, gender,
and age, can undermine the accuracy of estimating correlations between genes and/or
tissues.

Tensor based approaches have been proposed to handle heterogeneity in each mode and to
learn the clustering patterns across different modes of the data in an unsupervised manner
analogous to PCA and SVD [16, 32, 27].

The study described in [32] utilized NTF on RNA-seq data from the Genotype-Tissue
Expression (GTEx) project, which encompassed samples from 544 individuals across 53 human
tissues at the time of the study. The results demonstrated the successful identification of
three-way interactions with high accuracy and robustness.

Gene expression data from nG genes, nI individuals, and nT tissues is modeled by a 3-way
tensor Y ∈ RnG×nI×nT , and a low rank r approximation is obtained through NTF to identify
latent factors:
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Figure 3.1. Tensor factorization based pipeline for high-dimensional genomics data analysis given in
[32].(a) Multi-tissue multi-individual gene expression data.(b) Input expression tensor after normalization and
imputation.(c) Non-negative factorization of expression tensor into latent factors along gene, tissue, and indi-
vidual modalities. (d) Representation of three-way clusters corresponding to each modality. (e) Identification of
sources of variation in each latent factor by utilizing metadata, such as gene ontology (GO) annotation, tissue
labels, and individual-level covariates.

(3.1) Y =

R∑
r=1

λrGr ⊗ Ir ⊗ Tr + E ,

where λr ∈ R+ and Gr, Ir, Tr are norm-1 unit vectors; and E is a noise tensor with each
entry Ei,j,k i.i.d N(0, σ2

e). Each factor Gi is associated with a set of weights, which indicate
the importance of each gene in the corresponding metagene. Gr corresponds to “eigen-genes”,
representing the underlying biological pathways or processes that contribute to the observed
gene expression patterns. Ir corresponds to “eigen-individuals”, capturing individual-specific
characteristics that affect gene expression, and Tr corresponds to “eigen-tissues”, representing
the shared biological attributes across different tissues.

The paper [32], highlights cases where PCA and matrix-based methods fail to capture
mode-specific grouping and three-way interactions. It is noted that matrix PCA does not pro-
vide much insight into gene/tissue clustering due to the destruction of the three-way structure
encoded in higher-order tensor data caused by matricization.

4. Toolboxes. There are several open-source tensor decomposition toolboxes available for
various programming languages [17]. In this section, we provide an overview of some of the
most popular toolboxes along with their features and supported decompositions.

Tensor Toolbox [4]: Tensor Toolbox is a MATLAB toolbox that enables users to per-
form various tensor computations and decompositions. It supports various tensor decompo-
sitions such as CANDECOMP/PARAFAC (CP), Tucker, and Higher-Order Singular Value
Decomposition (HOSV). The toolbox also includes alternative decompositions such as Poisson
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Tensor Factorization via alternating Poisson regression (APR), Generalized CP (GCP) tensor
factorization, and symmetric CP tensor factorization. Tensor Toolbox has been around for
almost two decades and has been widely used and cited in numerous research studies, which
contributes to its popularity and reputation as a reliable and robust tool for tensor analysis.

TensorLy [18]: TensorLy is an open-source, BSD-licensed library for tensor computations
in Python. It is compatible with multiple backends such as NumPy, PyTorch, TensorFlow,
JAX, Apache MXNet, and CuPy. It has minimal dependencies and offers thorough documen-
tation. It supports various core tensor operations, decompositions, and tensor regressions. It
also supports tensorized deep learning with TensorLy-Torch. It has an easy-to-use API, which
makes it a popular choice for researchers and practitioners.

Tensorlab [31]: Tensorlab is a MATLAB toolbox that provides various tools for tensor
computations, coupled tensor decompositions, and complex optimization. It supports dense,
incomplete, sparse, and structured datasets and offers a library of pre-implemented transfor-
mations and structures. Tensor decompositions of both real and complex tensors such as the
canonical polyadic decomposition (CPD), multilinear rank-(Lr, Lr, 1) terms, low multilinear
rank approximation (LMLRA), multilinear singular value decomposition (MLSVD), and block
term decomposition (BTD) can be computed. Tensorlab also offers a tensorization framework,
structured data fusion (SDF), and complex optimization algorithms. Demos have been devel-
oped to illustrate the power of the toolbox in different case studies.

Other toolboxes: Multiple toolboxes are available for tensor computations, including
the N-way Toolbox, TT-Toolbox, and Probabilistic Tensor Decomposition Toolbox. The N-
way Toolbox [2] is capable of handling multi-modal data and offers various methods for fitting
models such as PARAFAC, Tucker, N-PLS, GRAM, and TLD. The TT-Toolbox [14] is a
MATLAB-based toolbox for tensor computations using the Tensor Train (TT) format, which
is an efficient way of representing high-dimensional tensors with low-parametric methods.
The probabilistic tensor decomposition toolbox [12] is also a MATLAB toolbox for tensor
decomposition using Variational Bayesian inference and Gibbs sampling.
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