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• Our result : We determine the subrank for
" random tensors

"/
" almost all tensors

"

/ generic tensors

• Improve on previous bounds of Strassen & Biirgisser from lggi
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Two characterizations of rank of a matrix ME #
n ✗ n

r
← minimize

Me = 2- Ui ④ Vi
"

Create matrix from identity
"

i = I§ equi, ,
" """""""

"

M=AIrB_

A MB =

Ire maximize
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Tensorrank_

minimize
2?⃝ = Éuixovixwi ( ret )i = 1

Equiv :

1- = U⊕V④W . Éeixeixei
"

\ ① (t)
s
e-
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Two different notions of rank of a tensor TE #
n×n×n

Tensorrank-
• Matrix multiplicationminimizes ↑!%!mp*i
,?⃝ = Éuixovixwi ( ret )÷ . ftp.az]Equiv :

1- = U⊕V④W . Éeixeixei
I#

• Matrix Multiplication) Q.LT )
s
←

maximize / .

Additive combinatorics/ 2- eixeixei = U④V⊕W . T
- I



Matrix rank

-1
linear "

!I!
"

f-of rows and columns

sub rank:É⇒⇔⇔.linear combinations

of slices in all

win
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Ems bilinear map T : #

n
× #

"

→ IF
"

Q (T) em number of independent scalar multiplications that
can be reduced to T

•
Quantum Information
T E E

" ✗" ✗ n
ans Tripartite quantum state

QIT ) largest
"
GHZ

"

state obtainable from T by SLOCC

• Combinatorics

HE In] ✗ In] ✗ In] hypergraph , independence number ✗ ( H ) ≤ QIT) for

any T that " fits
" H

. E.g . cap sets ,
sunflowers, corners . . . .
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T E #
hxnxn

◦ ≤ QCT ) ≤ SRCT ) ≤ n ≤ RCT ) ≤ n2
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RGCT )
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hxnxn

Generally : o ≤ QCT ) ≤ SRCT ) ≤ n ≤ RCT ) ≤ n2

AR (T )

GRIT )

RGCT )

on random
-

≈nT
tensors T :

[ ≈ n
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|TheoMMForalmostallTEFn×n×nwehareQ(T)=⊖(Vn#÷
Remarks :

•

"

Almost all
"

=

"
random

"

= generic
• that is

,
there is a nonempty Zarisk - open the #

""✗"

such that

for all tell we have QIT) = DIVI )
•• Very precise bounds : VÑ-5 ≤ Q (T) ≤ V3nI

•• Previously : ⑦ (T) ≤ n
2/3+041

• Also for higher-order tensors

• Application : Subrank is not additive under direct sum
.
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Upper bound

Qln ) : = subrank of a generic tensor in #
"✗" ✗ n

To prove : ① ( n) ≤ V3nI

Cr : = { tensors in #
"" × "

with subrank ≥ r }
¥1 Qln) = largest r such that dim Cr = dim #

""✗ n

¥ dim Cr ≤ n3- r( r2 - 3h +2)

Let t = Qln ) .

Then n' = dim Ct ≤ n
3- tct

?
- 3h +2) .

Then t 2- 3Mt 2 ≤ 0

So t ≤ V3n-
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Cr : = { tensors in #
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Proofidea

• non- injective parametrization of Cr
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Lower bound

✗ r = { tensors in #
" '"'"

with tr] ✗ [r ] ✗ [r ] subtensor arbitrary diag .}
Hr : Glen ✗ G-Ln ✗ G-Ln ✗ ✗

r
→ #

n×n×n

(A ,
B
,
C

,

T ) ↳ (1-④ B ④C)T has image Cr

Proofidea
• Find condition that imply image of Hr has full dimension

• Use notion of differential dry, ↓
- tangent space of Xr

%) (gngz.gs ,t)
: Matnxn ✗ Matnxn ✗ Matnxn ✗ Yr → #

" ✗n×n

(A) B.C.T ) ↳ ④ ④g. ④g3)+ (91×013×093) + (g. ④g> ④C)IT
+ (91×092×093) S .
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theorem there are subspaces ✗ i e #
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of dim n

""
each

,
such that

#
^)④

"

= ✗
,
IT ] + ×

,
[2 ] + . . . + Xn In ] .

Again : dimensions match
.
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Theory there are subspaces ✗ i e Matz
, }
of dim 3 each

,
such that

#
3×3×3
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,
[I ] + ×

,
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3
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2

✗
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÷
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Application : Subrank is not additive under direct sum

Theorem there are tensors S
,
T C- F-

"✗"✗"
such that QIS )

,
QIT) ≤ V3n→

while QLS +0T ) ≥ n .

Proof idea

• Let t be
"

random !

• Let s = In - T .

Then S is
"

random
"

.

• Then Q( S )
,
QLT ) ≤ V3n7 by our theorem

.

• On the other hand
,
Q (Stt ) ≥ QIS +T) = ① ( In ) = n

. ☐



Selected Open Problems

i. Our upper bound QIT) ≤ LV3n⇒ for geneve TE #
"✗"×"

is tight for n ≤ too .
Is this always true ?

2
. Determine all possible tensor space decompositions

3
.
What is the largest gap between QCS +0T) and Q /5) +QIT ) ?
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S E V
, ④ V2 ④ V3

T E Wi ④ Wz ④ W }
Kronecker product : S ☒T c- (V, ④Wi) ④ (V2 ④Wz ) ④ /V3 ④W} )
Suhana is super- Mutt : QIS ☒T ) ≥ QISIQIT )

Question How does Q(T☒
" ) behave when n → • ?

theorem ( Christandl , A-esmundo, 7) t.lt TEV, ④ V2 ④ V3 be any tensor .

Exactly one of the following is true :

it F- 0

ii) QlT☒ⁿ ) = I

iii) QCt☒n ) = , .gg
n - ocn ,

for all n

for all n

iv) ⑦ ( 1-☒ " ) ≥ 2h for all n




