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1. On some 0-dimensional schemes

 We will work in the Wilderness of 0-dim schemes, but we will avoid
the Wilderness of the praries such as:



1. On some O-dimensional schemes

* We will work in the Wilderness of 0-dim schemes, but we will avoid
the Wilderness of the praries such as:




1. On some 0-dimensional schemes

Our wilderness will be (No Cactuses even if we are in Poland!):



1. On some 0-dimensional schemes in the plane

e Qur wilderness will be like this:

i.e. We will work in a smooth (smoothable) enviroment: the plane!



1. On some 0-dimensional schemes in the plane

We want to consider how do you visualize a O-dimensional scheme Z .
et Z with support at one point; e.g. the curvilinear points:

Ideals: Y2 Y5 YA YD) (XY Y9

(<

How to visualize a Fat Point: mP, of ideal (1,)™= (x,y)™ ?

Schemes:




1. On some 0-dimensional schemes in the plane

One first Image of a fat point is like this:

» $ ... and so on

This 1mage is also related to the fact that any line passing through the
point mP meets the fat point in an m-curvilinear point:

In this sense the fat point Is symmetric , with rispect
to any direction: any line intersects the fat point mP
giving a curvilinear point of lenght m.




1. On some 0-dimensional schemes in the plane

Another image Is a triangular one:

This 1s suggested by Algebra (the monomials in X,y),
It is a Pithagorean, in the sense that it respects the

fact that lenght(mP) = (m; 2), a triangular number,

and it also respects the behaviour of the residues
with respect to lines:

But this image Is not round, it is

o not symmetric.




1. On some 0-dimensional schemes in the plane

We can put together the two visualizations by viewing the fat point like
a Bohr atom:

m+ 2

5 ) = |+2+3+...-+m

In this Image, the (

4P points which make up the m-fat point are
AN thought on «orbitals» (classically known as
AREPY infinitesimal neighborhoods), not in definite
1 positions there, but «delocalized along the
orbital».
With this image, the residuation \ R
works like this: EoN
Y 3P




1. On some 0-dimensional schemes in the plane

Let us consider one property of fat points that lead us to give the
following definition:

Definition: Let Z € A? be a 0-dimensional scheme supported at one
point P. We will say that Z 1s m-symmetric if for every line L through P
we have length (ZNL) = m.

Remark: The m-fat points mP are the smallest m-symmetric schemes;
actually any m-symmetric scheme Z contains mP (this Is quite obvious:
If fe /,thenevery line thru P meets {f =0} with multiplicity at least m,
hence fe (Io)™).

Question: What Is the maximal lenght (if any) for an m-symmetric Z ?



1. On some 0-dimensional schemes in the plane

Example: One simple example of an m-symmetric Z which Is not an
mP Is the scheme given by the ideal 1, = (x™,y™), whose lenght Is £(Z) =
m?. This of course shows that the maximal length is >m=.

Definition: An m-symmetric scheme of maximal length will be called
an m-superfat point, or just a superfat point if we do not need to specify
m.

Definition: An m-symmetric scheme whose ideal is of type (L,™, L,"),
for L; € C[x, y],, L; # L,, Is called an m-square point, or jUSt an’m-
square

Proposition: Let Z be an m-superfat point, then we have 7 (Z) < m?;
hence /(Z) = m?. Moreover, for m=2, any 2-superfat point is a 2-square.



1. On some 0-dimensional schemes in the plane

Sketch of proof:  Let P=(0,0) and I, = (G,,...,G,); at least two of the
G; must have multiplicity m at P, let (G,,...,G,) be the ones which have
multiplicity m at P, and (F,,...,F,) their tangent cones, that we may
assume to be linearly independent. Then a generic linear combination F
of F,,..., F., will have no common factor with F,, hence (F F,) will
define a 0-dimensional scheme X at P with £(X) = m?. Since Z € X, we
have £(Z) < £{(X) = m?. Thus, £(Z) = m-.

Case m=2. Since ¢(Z) = 4, there are two conics in the ideal, necessarily
singular, say L,L,and L;L,. These two conics generate a line in the P?
parameterizing 2-forms in x,y; such line will intersect the conic which
parameterizes squares of linear forms in two points, say x? and y?, so we
nave I, = (X2,y2).




1. On some 0-dimensional schemes in the plane

Remarks:

- There are other m-symmetric schemes either than fat points or superfat
points, e.g the ideal (X3, y3, x2y?) defines a 3-symmetric scheme Z with
t(2) = 8.

- There are infinitely many different m-superfat points and m-squares
with support at the same point (not true for fat points).

- Not all superfat points are squares, e.g. the ideal (x3+y3, y*- xy?, xy3,
x%y?) defines a 3-superfat point, but it is not a c.i. It is generated as a
generic scheme of length 9.

Question: Does a generic m-superfat point have generic Hilbert
funcion? It looks likely, from examples. But what does “generic”
mean here?




1. On some O-dimensional schemes in the plane

Now, superfat points and In particular m-squares, have properties that
again are counterintuitive: they are symmetric (can be viewed as
«disks», as It happens for fat points) but, at the same time, they can have
«particular directions»; let us consider the simplest ones, the 2-squares:

The 2-square of ideal (x2,y?), has of course 2 particular directions, and
when we do the residual with respect to a generic
line, we get a 2-jet on a different line; only for the

+ lines x=0 and y=0 we have that the residual jet is on

the same line.




1. On some 0-dimensional schemes in the plane

Question: What happens if we take all the m-square points with support
at the same point?

Proposition: For every P € P?, we have that the schematic union of all
m-squares supported at P is the fat point (2m-1)P.

The proof Is quite technical, involving mainly linear algebra and a
combinatorial lemma.

Remark: The above is not true for particular unions; i.e. if you take all
the 2-squares with ideal (L, L,%), where L,, L,are perpendicular lines
thru the origin, then the union of all those gives a scheme of length 5,
which has ideal (x? + y?, y3, xy?) . Notice that this union of 2-symmetric
schemes IS NOT 2-symmetric: (x+1y) meets it with length 3!



1. On some 0-dimensional schemes in the plane

Remark: If we consider the scheme we just obtained, defined by the
ideal (x2 + y?, y3, Xy?) , over R, then it is a 2-superfat point of length 5!

Question: What Is the Hilbert function of generic unions of superfat
points?

As we know this problem iIs open also for fat points, for this schemes
we guess what the answer Is for 2-squares:

Conjecture: The union Z of s generic 2-square points has the same
generic Hilbert function as 4s simple points.

Motivation: Examples...But s=7 Is tricky!



2. 2-squares and 2"-tensors

We want to explore what use superfat points can have (if any) on the
study of structured tensors, namely on Symmetric and Partially
Symmetric tensors of shape 2", i.e. C°>x C?x ... x C? (n-times).

In order to fix ideas, let’s give a fast look of 24-tensors of those kind.

General 24-tensors -~ points in P
where tensors of rank 1 are parameterized by the Segre surface:
V1114, image of Pt xpPix PLx Pl via the Segre map which is defined

by the forms of multidegree (1,1,1,1) in C[S,,Sq; 5.ty Ug,Uy; Vi,Vq]-



2. 2"-tensors

Here the x;, 1),k 1€{0,1}, 1010
are the cohordinates in P15 ;
the Segre Variety V,,,,E P

IS parameterized by

Xig = Sitiuvy, 1)kl €{0,1},
and its ideal is defined by

the 2x2 minors in the tensor.

x1110

X0110

xﬂlﬂﬂ



2. 2"-tensors

If we are interested in symmetric 24-tensors (Bosons),

we have to consider the space

P+ € P defined by the symmetry
relations:  Xjjq = X iy

(for any permutation o). We can use
coordinates Y;, in this P*and here
the tensors of symrank 1 are given by
the Veronese embedding Pt — P4

.e. the rational normal curve V,,
defined again by the 2x2 minors in
the tensor.
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2. 2"-tensors

There Is an intermediate locus between the previous two; the space of
partially symmetric tensors: we have:

P4 € P8 C P!> | where the P8 is
given by the tensors X, symmetric,
separately, on the first and the second

20100

<
0000

two Indices: Xjj= X, i) iy (TOr all
permutations o, 7 ), for which we
nave used coordinates zy,

H
]
|
|
I 1101
I 1101
”‘jizj? ; 21101

Here too the rank 1 tensors are given
oy all the 2x2 minors in the tensor.




2. 2"-tensors

We can view this P8 space of partially symmetric 24-tensors as the space
P(C[sp,Siitotilon) = PS(C[sp, ) ®S%(Clty,t,]), i.e. the (2,2)-forms,
bihomogeneous of bidegree (2,2).

Under that identification, the forms of psrank = 1 are parameterized by
the Segre-Veronese variety V,, S P®, given by the embedding of P* P!
via the (2,2)-forms, with parametric equations

Zijg — SiSitel; € C[Sq.S1; tosts] + 1)k 1 €{0,1}.

The surface V,, is classically known as a particular Del Pezzo
surface, the only one which is not a projection of the triple Veronese
embedding of P? from points on it.



2. 2-squares and partially symmetric tensors

Now back to 2-squares: if we consider a 2-square Z in Pt xP, and then
the Segre-\Veronese embedding v, , into P®, we have that v, 2(Z) cV,,
will span a space <v,,(Z)> = P3 < P%, givenby (I;1),,.

If we want to consider the variety given by the union of all <, ,(Z)> for
Z in Pt xP1 we get:

Uzeptwpty <152(2)> = Ugpeptpiy <15,(3P)> = 7,(V,,)
Where 7, (V,,) Isthe 2-osculating variety of V,, , I.e. the union of all
the osculating P*’s to V,, .

In fact, the osculating P> to a point v, ,(P) in V,,, is just < v, ,(3P)>,
and we have proved that the union of all Z supported at P Is exactly 3P.



2. 2-squares and partially symmetric tensors

So there Is no reason to study the variety of all the <v, ,(Z)> ‘s, but if
we consider a point in P xP1, there is a quite natural scheme Z to be

considered at P = [a,b:c,d], namely let:

IS: {bSO'aSl:O} I : {dto'Ct]_:O} y : pliﬂ];)]”
= (14 1%

All other 2-squares which we may

consider (generated by other pairs

of affine lines) give ideals generated
In bidegree (2,2), while ours has two

= dt,-ct=0 [a,b;c,d]

generator In bidegrees (0,2) and (2,0).




2. 2-squares and partially symmetric tensors

Hence, for each point P = [a,b:c,d] in P1 xP1, consider the scheme Z(P),
with I, = (I, 1%) and then the variety:

0, (V22) = Upeptpty <15,(Z(P))> .
We obviously have:

71 (Vo) €0y (Vz,z) C 7,(V,,) and dim ([, (V,,) = 5.

Since <v,,(Z(P))> = (IZ(P) Y,,, let
m, : {as,+bs,=0}, m.: {ct,+dt,=0},
sothat I, L m, and I, L m,, with respect to the apolarity action.



2. 2-squares and partially symmetric tensors

: 1 — 2m 2 2 2
hen: (I;1),,= <myme, mem, I, mgsmes, mlmd> .

We can recall that the tangent space to V, , at 1, ,(P) Is
<mgm?, m2m, I, mJl.mz> .

Hence, a point T In g, (V,,) can be written (by choosing appropriate
coordinates in Pt xP13as:

24 2 2 2
Z1111 S1°07 Z1901 S1Toly + Zp101 SoS1ti“F+ Zp101 SoS1lols



2. 2-squares and partially symmetric tensors

S0, q,(V,,) parameterizes 24-tensors which can be written as:

%0101




2. 2-squares and partially symmetric tensors

Proposition: o, (0, (V,,) ) = P as expected.
Proof:
<V2,2(Z(P))> =< mszmt2 ’ mszmt It’ msls mtz’ mslsmt|t> = (msmt) 2,2
So, let f : (C[sy,8:]1)°x (Clto,t4]1)? 0y (V22) , with:
f (mg,ng;m;, Ny = mnmn, € (MMy) 5, S 4, (Vy2) -
To get the tangent space to g, (V,,) In mgnmn, we must compute:

llm af[(msﬂns;mta nt)+7\“(uS9VS;ul‘9 vf)] =

A—
lim % (CRAICRVSRICAVEICRIAR)

A
for a generic (u,v;u, v,).



2. 2-squares and partially symmetric tensors

This gives:
W = <u,n.mn,, mn.un,, myv.man,, mnmy,>
Where (u.vu,, v,) can be any forms. This can be written
<mgm?, ma2md, , mJ.mz?, mJd. ml, mnnl2, l2mn, > =
= (mym¢, mgng, M, ) 5,

W has (affine) dim = 6, as expected, and W = (ly) ,,, the bidegree 2,2
part of the ideal of X which Is made of three points (not on a fiber),
namely:

m.NAm,, m.Nn,, mnNn,



2. 2-squares and partially symmetric tensors

By Terracini’s Lemma, the affine cone on the tangent space to a generic

point of o, (q, (V,5,) ) Is W+ W’
where W and W~ are the affine
cones at the corresponding two
points on g, (V,, ), hence :

W+ W’=(ly) 25 + (1) 22 =

= (Ixx) 20 =Ry,,
Since XNX’' = d.

P'xP

1




2. 2-squares and partially symmetric tensors
The previous proposition can be generalized:

Proposition: dim o, (0, (V44)) = 11, for all d >3, as expected.
Proof(sketch) :

Proceding as before, we get that
<1y4(Z(P))> =< mfmd, mfm&t I, mFH md, mGm &> = (mtm L)
So, let f : (C[sp,81]1)"% (Clto,ty] 1)? 0y (V) » With:

f (ms’ns;mt’ nt) = msd_lnsmtd_lnt € (msd_lmtd_l) d,d S q2 (Vd,d) -

To get the tangent space to g, (V4 4) in m&-tnim4in, we must compute:

. d _
;\I—I}(I) af[(msﬂns;mtﬂ nt)+7\‘(uS’VS;ut’ Vf)] -

lim <2 [ 22011430, it 0]
for a generic (u,v;u, v,).




2. 2-squares and partially symmetric tensors

And we end up with
W = <msdmtd1 msd-1|S mtd’ msdmtd_llt , msd_llsmtd_llt ’ msd-lnsmtd-2|t2 ’
m212mdin, > =
— (msd-lmtd-l , msd-lnsmtd—2|t2’ msd—z Iszmtd_lnt) d.d
W < (ly) 44, the bidegree d,d part of the ideal
IX: (msd-thd-Z ’ msd_lns ’ mtd_lnt )

Where W has (affine) dim =6, as expected, while dim (ly) 44=7,and X
IS a scheme which is made of the lines m and m, (d-2)ple and two (d-1)-
jets on the lines n., n, at the points m.N n,, m.Nn,.



2. 2-squares and partially symmetric tensors

As In the case d=2, dim o, (0, (V4 4)) Will be given by W + 7’, where W
and W’ are the affine cones on two generic points on g, (V44 ), and :

dim(W+ W) =dimW +dim W’-dimW n .

We have W N 7" S (ly) 44 N (IX)dd = (lxux) aq =10} , since the forms
in (Iyux) gg Should contaln m3-2m 82 .82 242 and have mtersectlon d-1
with the lines n, ,n, ,n ,n; at the four pomts m.N N, NN ,m;Nn,
miNni. ThIS s impossible forevery d>3. Hence:

dim(W+ W) =dimW+dim W’'=6+6=12,
And so dim o, (0, (V4 4)) = 11.




3. 0,(Vqq) » W-states and cuckoo varieties

There Is an interesting subvariety of q, (V,4), expecially for application
to Quantum Physics. Every Segre-Veronese variety

pl ><P1><.“><P1 dd,.....d Pd-lk

Is related to the study of entanglement of k d-body systems made of
different species of indistinguishable bosonic particles (like photons):
the Hilbert space parameterizing their states Is

SIH,® SIH, ... @ SUH,

and in the case #, = C?, it is of interest to look at tensors (W-states in
physics) of type W, ® ... ® W, where

W, =xd1ly e SdC? c (C?)®d
(e.g. see Ballico, Bernardi, Christandl, Gesmundo 2019)



3. qZ(VQQ) . W-states and cuckoo varieties

et us consider the case k=2;

0, (Vqq) parameterizes partially symmetric tensors given by :

— - d-1 d d-1 d-1 —
<Vd,d(Z(P))> =< msdmtd’ msdmtd L It’ ms Is mt J ms Ismt It> —
— (m d-lm d-l)
S t d,d

Hence for all tensors of type
Wy @W,y =matamdipb,, for a;e Ry, be Ry,

We have: W, ®W, € q,(Vyq)

More specifically, consider the subvariety qq, (Vqq) S 0, (Vyq) Which
parameterizes exactly the tensors Wy QW, (this is the cuckoo variety).



3. qZ(VQQ) . W-states and cuckoo varieties
qd, (Vqgq) Is the image of the map:

PLXPLxpL*>pl™ =1, (Vy4) , with: (mg, a, m, b,) ——mdtamdip,
(For given my, m, the image is a quadric inside <v; 4(Z(P))> = P3).

S0 qq, (Vy4) has dimension 4 and (for d >2) it is isomorphic to QxQ , where
Q is a smooth quadric in P3,

In the case d=2, it is not hard to compute the ideal of qq, (V,,) into PS; it is
given by the 2x2- minors of the matrix:

Zoooo <0001 <0011
M, =1 %0100 Zo101 Zo111 |.
Z1100 41101 <1111

Which shows that qq, (V) is just the Segre variety s, (zPZXPZ) actually it is
easy 10 check that o, (V) = Sy 1(7 (V) X 7 (V) = s“(‘ p2xp2)



3. qZ(VQQ) . W-states and cuckoo varieties
Anyway, this can be generalized:

Remark: Any qd, (Vgq) = S11(7 (V) X 7(Vy)) S 514 (PU>PY).
And qq, (Vyg) is 2-defective, but not as much as s, ; (P9xP9) :
Proposition: Any o, (qd,(Vqg4)) , d >1is defective, with defect =2 .

This can be seen via the standard way of Terracini’s Lemma, studying the
tangent space in two generic points of the variety. Moreover, trivially:

Proposition: The ideal of o, &qqz(v 4)) Is given by the 2x2- minors of the
(d+ )><(dd+1)-m|nor_s of the miatrix M. Which"has the (d+1)? variables of the
space SU C?'as entries and by the relations among the entries on each row
which define 7 (V) inside P4,

The generalization to the case of more factors is on its Wa31/ .
The proof that m-superfat points have degree m”works also in A”,



