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1. On some 0-dimensional schemes

• We will work in the Wilderness of 0-dim schemes, but we will avoid
the Wilderness of the praries such as: 
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1. On some 0-dimensional schemes

Our wilderness will be (No Cactuses even if we are in Poland!):



1. On some 0-dimensional schemes in the plane

• Our wilderness will be like this:

i.e. We will work in a smooth (smoothable) enviroment: the plane!



1. On some 0-dimensional schemes in the plane

We want to consider how do you visualize a 0-dimensional scheme Z .

Let Z with support at one point; e.g. the curvilinear points: 

Ideals:            (x,y2) ;   (x,y3) ;        (x-y2, y2) ;        (x-y2, y3) 

Schemes:

How to visualize a Fat Point: mP , of ideal  (IP)m = (x,y)m ?  



1. On some 0-dimensional schemes in the plane

One first image of a fat point is like this:

… and so on 

This  image is also related to the fact that any line passing through the 
point mP meets the fat point in an m-curvilinear point: 

In this sense the fat point is symmetric , with rispect
to any direction: any line intersects the fat point mP
giving a curvilinear point of lenght m.



1. On some 0-dimensional schemes in the plane

Another image is a triangular one:

This is suggested by Algebra (the monomials in x,y), 
it is a  Pithagorean, in the sense that it respects the 

fact that lenght(mP) = 
𝑚 + 2

2
, a triangular number,

and it also respects the behaviour of the residues 
with respect to lines:

But this image is not round, it is 
not symmetric.



1. On some 0-dimensional schemes in the plane

We can put together the two visualizations by viewing the fat point like 
a Bohr atom:

In this image, the 
𝑚 + 2

2
= 1+2+3+…+m 

points which make up the m-fat point are 
thought on «orbitals» (classically known as 
infinitesimal neighborhoods), not in definite 
positions there, but «delocalized along the 
orbital». 

With this image, the residuation
works like this:



1. On some 0-dimensional schemes in the plane

Let us consider one property of fat points that lead us to give the
following definition:

Definition: Let Z ⊆ A2 be a 0-dimensional scheme supported at one
point P. We will say that Z is m-symmetric if for every line L through P
we have length (Z⋂L) = m.

Remark: The m-fat points mP are the smallest m-symmetric schemes;
actually any m-symmetric scheme Z contains mP (this is quite obvious:
if f ∊ IZ , then every line thru P meets {f =0} with multiplicity at least m,
hence f ∊ (IP)m ).

Question: What is the maximal lenght (if any) for an m-symmetric Z ?



1. On some 0-dimensional schemes in the plane

Example: One simple example of an m-symmetric Z which is not an
mP is the scheme given by the ideal IZ = (xm,ym), whose lenght is ℓ(Z) =
m2. This of course shows that the maximal length is ≥ m2 .

Definition: An m-symmetric scheme of maximal length will be called
an m-superfat point, or just a superfat point if we do not need to specify
m.

Definition: An m-symmetric scheme whose ideal is of type (L1
m, L2

m),
for Li ∈ C[x, y]1, L1 ≠ L2, is called an m-square point, or just an m-
square.

Proposition: Let Z be an m-superfat point, then we have l (Z) ≤ m2;
hence l (Z) = m2. Moreover, for m=2, any 2-superfat point is a 2-square.



1. On some 0-dimensional schemes in the plane

Sketch of proof: Let P=(0,0) and IZ = (G1,…,Gs); at least two of the
Gi must have multiplicity m at P, let (G1,…,Gr) be the ones which have
multiplicity m at P, and (F1,…,Fr) their tangent cones, that we may
assume to be linearly independent. Then a generic linear combination F
of F1,…, Fr-1 will have no common factor with Fr, hence (F, Fr) will
define a 0-dimensional scheme X at P with ℓ(X) = m2 . Since Z ⊆ X, we
have ℓ(Z) ≤ ℓ(X) = m2 . Thus, ℓ(Z) = m2 .

Case m=2. Since ℓ(Z) = 4, there are two conics in the ideal, necessarily
singular, say L1L2 and L3L4 . These two conics generate a line in the P2

parameterizing 2-forms in x,y; such line will intersect the conic which
parameterizes squares of linear forms in two points, say x2 and y2, so we
have IZ = (x2,y2).



1. On some 0-dimensional schemes in the plane

Remarks:

- There are other m-symmetric schemes either than fat points or superfat
points, e.g the ideal (x3, y3, x2y2) defines a 3-symmetric scheme Z with
ℓ(Z) = 8.

- There are infinitely many different m-superfat points and m-squares
with support at the same point (not true for fat points).

- Not all superfat points are squares, e.g. the ideal (x3+y3, y4- xy2, xy3,
x2y2) defines a 3-superfat point, but it is not a c.i. It is generated as a
generic scheme of length 9.

Question: Does a generic m-superfat point have generic Hilbert
funcion? It looks likely, from examples. But what does “generic”
mean here?



1. On some 0-dimensional schemes in the plane

Now, superfat points and in particular m-squares, have properties that
again are counterintuitive: they are symmetric (can be viewed as
«disks», as it happens for fat points) but, at the same time, they can have
«particular directions»; let us consider the simplest ones, the 2-squares:

The 2-square of ideal (x2,y2), has of course 2 particular directions, and
when we do the residual with respect to a generic
line, we get a 2-jet on a different line; only for the
lines x=0 and y=0 we have that the residual jet is on
the same line.



1. On some 0-dimensional schemes in the plane

Question: What happens if we take all the m-square points with support
at the same point?

Proposition: For every P ∊ P2, we have that the schematic union of all
m-squares supported at P is the fat point (2m-1)P.

The proof is quite technical, involving mainly linear algebra and a
combinatorial lemma.

Remark: The above is not true for particular unions; i.e. if you take all
the 2-squares with ideal (L1

2, L2
2), where L1, L2 are perpendicular lines

thru the origin, then the union of all those gives a scheme of length 5,
which has ideal (x2 + y2, y3, xy2) . Notice that this union of 2-symmetric
schemes is NOT 2-symmetric: (x∓iy) meets it with length 3!



1. On some 0-dimensional schemes in the plane

Remark: If we consider the scheme we just obtained, defined by the
ideal (x2 + y2, y3, xy2) , over R, then it is a 2-superfat point of length 5!

Question: What is the Hilbert function of generic unions of superfat
points?

As we know this problem is open also for fat points, for this schemes
we guess what the answer is for 2-squares:

Conjecture: The union Z of s generic 2-square points has the same
generic Hilbert function as 4s simple points.

Motivation: Examples…But s=7 is tricky!



2.  2-squares and 2n-tensors

We want to explore what use superfat points can have (if any) on the
study of structured tensors, namely on Symmetric and Partially
Symmetric tensors of shape 2n, i.e. C2 × C2 × … × C2 (n-times).

In order to fix ideas, let’s give a fast look of 24-tensors of those kind.

General 24-tensors                     points in P15

where tensors of rank 1 are parameterized by the Segre surface:

V1,1,1,1, image of P1 ×P1× P1 × P1 via the Segre map which is defined

by the forms of multidegree (1,1,1,1) in C[s0,s1; t0,t1; u0,u1; v0,v1].



2. 2n-tensors

Here  the xijkl ,  i,j,k,l ∊ {0,1} ,

are the cohordinates in P15 ; 

the Segre Variety V1,1,1,1⊆ P15 , 

is parameterized by 

xijkl =  sitjukvl ,   i,j,k,l ∊ {0,1} ,

and its ideal is defined by 

the 2×2  minors in the tensor. 



2. 2n-tensors

If we are interested in symmetric 24-tensors (Bosons),

we have to consider the space

P4 ⊆ P15  defined by the symmetry

relations:   xijkl = xs(ijkl),

(for any permutation s ).  We can use

coordinates  yijkl in this P4 and here 

the tensors of symrank 1 are given by

the Veronese embedding P1 P4 

i.e. the rational normal curve V4, 

defined again by the 2×2  minors in 

the tensor.

Symmetric 24-tensors           Forms of degree 4 in 2 variables.



2. 2n-tensors

There is an intermediate locus between the previous two; the space of 
partially symmetric tensors: we have: 

P4 ⊆ P8 ⊆ P15  , where the P8 is 

given by the tensors xijkl symmetric, 

separately, on the first and the second

two indices:  xijkl= xs (ij)t(kl) (for all 

permutations s,t ), for which we 

have used coordinates  zijkl

Here too the rank 1 tensors are given 

by all the 2×2  minors in the tensor.



2. 2n-tensors

We can view this P8 space of partially symmetric 24-tensors as the space
P(C[s0,s1;t0,t1]2,2) = PS2(C[s0,s1])⊗S2(C[t0,t1]), i.e. the (2,2)-forms,
bihomogeneous of bidegree (2,2).

Under that identification, the forms of psrank = 1 are parameterized by
the Segre-Veronese variety V2,2 ⊆ P8 , given by the embedding of P1 ×P1

via the (2,2)-forms, with parametric equations

zijkl sisjtktl ∊ C[s0,s1; t0,t1]  ,  i,j,k,l ∊ {0,1} .  

The surface V2,2 is classically known as a particular Del Pezzo
surface, the only one which is not a projection of the triple Veronese
embedding of P2 from points on it.



2. 2-squares and partially symmetric tensors

Now back to 2-squares: if we consider a 2-square Z in P1 ×P1 , and then 
the Segre-Veronese embedding n2,2 into P8 ,  we have that n2,2(Z) ⊆ V2,2 

will span a space <n2,2(Z)> ≅ P3 ⊆ P8 ,  given by  (IZ
ꓕ) 2,2 .    

If we want to consider the variety given by the union of all <n2,2(Z)> for 
Z in P1 ×P1, we get:

⋃{Z ⊆ P1 ×P1} <n2,2(Z)>   = ⋃{P ∊ P1 ×P1} <n2,2(3P)>  =  t2 (V2,2 )

Where t2 (V2,2 ) is the 2-osculating variety of V2,2  , i.e. the union of all 
the osculating P5’s to V2,2 .

In fact, the osculating P5 to a point n2,2(P) in V2,2 , is just  < n2,2(3P)> , 
and we have proved that the union of all Z supported at P is exactly 3P.



2. 2-squares and partially symmetric tensors

So there is no reason to study the variety of all the <n2,2(Z)> ‘s , but if 
we consider a point in P1 ×P1 , there is a quite natural scheme Z to be 
considered at P = [a,b:c,d], namely let: 

ls : {bs0-as1=0},   lt: {dt0-ct1=0} ,

IZ = (ls
2, lt

2)

All other 2-squares which we may 

consider  (generated by other pairs 

of affine lines) give ideals generated

in bidegree (2,2), while ours has two

generator in bidegrees (0,2) and (2,0).



2. 2-squares and partially symmetric tensors

Hence, for each point P = [a,b:c,d] in P1 ×P1 , consider the scheme Z(P), 
with  IZ(P) = (ls

2, lt
2) and then the variety:

q2 (V2,2 ) = ⋃{P ∊ P1 ×P1} <n2,2(Z(P))>  .

We obviously have:

t1 (V2,2 ) ⊆ q2 (V2,2 ) ⊆ t2 (V2,2 ) and  dim q2 (V2,2 ) = 5.

Since <n2,2(Z(P))> = (IZ(P)
ꓕ) 2,2 ,  let

ms : {as0+bs1=0},   mt: {ct0+dt1=0} , 

so that ls ꓕ ms and  lt  ꓕ mt  , with respect to the apolarity action. 



2. 2-squares and partially symmetric tensors

We have IZ(P) = (ls
2, lt

2) 2,2 = <ls
2lt

2 , ls
2mt lt , ls

2 mt
2, ms

2lt
2 , msls lt

2> .

Then:    (IZ
ꓕ) 2,2 =  < ms

2mt
2 , ms

2mt lt , msls mt
2, mslsmtlt>  .

___________________________________

We can recall that the tangent space to V2,2  at n2,2(P) is 

< ms
2mt

2 , ms
2mt lt , msls mt

2>  . 
_________________________________________________________________

Hence, a point T in q2 (V2,2) can be written (by choosing appropriate
coordinates in P1 ×P1 as:

z1111 s1
2t1

2 + z1101 s1
2t0t1 + z0111 s0s1t1

2 +  z0101 s0s1t0t1



2. 2-squares and partially symmetric tensors

So, q2 (V2,2) parameterizes 24-tensors which can be written as:



2. 2-squares and partially symmetric tensors

Proposition: s2 (q2 (V2,2) ) = P8, as expected.

Proof: 

<n2,2(Z(P))> = < ms
2mt

2 , ms
2mt lt , msls mt

2, mslsmtlt> = (msmt) 2,2

So, let  f  : (C[s0,s1] 1)
2× (C[t0,t1] 1)

2                      q2 (V2,2) ,  with:

f (ms,ns;mt, nt) = msnsmtnt ∊ (msmt) 2,2 ⊆ q2 (V2,2) .

To get the tangent space to q2 (V2,2) in msnsmtnt we must compute:

lim
λ→0

𝑑

𝑑λ
𝑓[(ms,ns;mt, nt)+l(us,vs;ut, vt)]  = 

lim
λ→0

𝑑

𝑑λ
[(ms+lus)(ns+lvs)(mt+lut)(nt+lvt)]

for a generic (us,vs;ut, vt).



2. 2-squares and partially symmetric tensors

This gives:

W = < usnsmtnt , msnsutnt , msvsmtnt , msnsmtvt >

Where (us,vs;ut, vt) can be any forms. This can be written

<ms
2mt

2, ms
2mtlt , msls mt

2, msls mtlt, msnslt
2 , ls

2mtnt >  =

= (msmt , msns , mtnt ) 2,2

W has (affine) dim = 6, as expected, and W = (IX) 2,2 , the bidegree 2,2
part of the ideal of X which is made of three points (not on a fiber),
namely:

ms ∩ mt , ms ∩ ns , mt ∩ nt .



2. 2-squares and partially symmetric tensors

By Terracini’s Lemma, the affine cone on the tangent space to a generic

point of s2 (q2 (V2,2) ) is W + W’ ,

where W and W’ are the affine

cones at the corresponding two

points on q2 (V2,2 ), hence :

W + W’ = (IX) 2,2 + (IX’) 2,2 =

= (IX∩X’) 2,2 = R 2,2 ,

Since X∩X’ = ∅ .



2. 2-squares and partially symmetric tensors

The previous proposition can be generalized:

Proposition: dim s2 (q2 (Vd,d)) = 11, for all d ≥ 3, as expected.

Proof(sketch) : 

Proceding as before, we get that

<nd,d(Z(P))> = < ms
dmt

d , ms
dmt

d-1 lt , ms
d-1ls mt

d, ms
d-1lsmt

d-1lt> = (ms
d-1mt

d-1) d,d

So, let  f  : (C[s0,s1] 1)
2× (C[t0,t1] 1)

2                      q2 (Vd,d) ,  with:

f (ms,ns;mt, nt) = ms
d-1nsmt

d-1nt ∊ (ms
d-1mt

d-1) d,d ⊆ q2 (Vd,d) .

To get the tangent space to q2 (Vd,d) in ms
d-1nsmt

d-1nt we must compute:

lim
λ→0

𝑑

𝑑λ
𝑓[(ms,ns;mt, nt)+l(us,vs;ut, vt)]  = 

lim
λ→0

𝑑

𝑑λ
[(ms+lus)

d−1(ns+lvs)(mt+lut)
d−1(nt+lvt)]

for a generic (us,vs;ut, vt).



2. 2-squares and partially symmetric tensors

And we end up with

W = <ms
dmt

d, ms
d-1ls mt

d, ms
dmt

d-1lt , ms
d-1lsmt

d-1lt , ms
d-1nsmt

d-2lt
2 ,

ms
d-2 ls

2mt
d-1nt >  =

=  (ms
d-1mt

d-1 , ms
d-1nsmt

d-2lt
2 , ms

d-2 ls
2mt

d-1nt) d,d

W ⊆ (IX) d,d , the bidegree d,d part of the ideal

IX =  (ms
d-2mt

d-2 , ms
d-1ns , mt

d-1nt ).

Where W has (affine) dim =6, as expected, while dim (IX) d,d = 7, and X
is a scheme which is made of the lines ms and mt (d-2)ple and two (d-1)-
jets on the lines ns , nt at the points ms ∩ ns , mt ∩ nt .



2. 2-squares and partially symmetric tensors

As in the case d=2, dim s2 (q2 (Vd,d)) will be given by W + W’, where W
and W’ are the affine cones on two generic points on q2 (Vd,d ), and :

dim(W + W’) = dimW + dim W’ - dim W ∩ W’ .

We have W ∩ W’ ⊆ (IX) d,d ∩ (IX’) d,d = (IX∪X’) d,d = {0} , since the forms
in (IX∪X’) d,d should contain ms

d-2mt
d-2m’s

d-2m’t
d-2 and have intersection d-1

with the lines ns ,nt ,n’s ,n’t at the four points ms ∩ ns , mt ∩ nt , m’s ∩ n’s ,
m’t ∩ n’t . This is impossible for every d ≥ 3 . Hence:

dim(W + W’) = dimW + dim W’ = 6 + 6 = 12, 

And so dim s2 (q2 (Vd,d)) = 11.



3.   q2(Vd,d) , W-states and cuckoo varieties

There is an interesting subvariety of q2 (Vd,d), expecially for application
to Quantum Physics. Every Segre-Veronese variety

k
P1 ×P1 ×… ×P1 d,d,….,d P d -1

Is related to the study of entanglement of k d-body systems made of
different species of indistinguishable bosonic particles (like photons):
the Hilbert space parameterizing their states is

Sd
H1⊗ Sd

H2 … ⊗ Sd
Hk , 

and in the case Hk = C2 , it is of interest to look at tensors (W-states in
physics) of type Wd ⊗ … ⊗ Wd , where

Wd = xd-1y ∊ Sd C2  ⊆ (C2)⊗d

(e.g. see Ballico, Bernardi, Christandl, Gesmundo 2019)



3.   q2(Vd,d) , W-states and cuckoo varieties

Let us consider the case k=2;

q2 (Vd,d) parameterizes partially symmetric tensors given by :

<nd,d(Z(P))> = < ms
dmt

d , ms
dmt

d-1 lt , ms
d-1ls mt

d, ms
d-1lsmt

d-1lt> =
= (ms

d-1mt
d-1) d,d

Hence for all tensors of type

Wd ⊗Wd = ms
d-1asmt

d-1bt , for  as ∊ R1,0 , bt ∊ R0,1

We have: Wd ⊗Wd ∊ q2 (Vd,d).

More specifically, consider the subvariety qq2 (Vd,d) ⊆ q2 (Vd,d) which
parameterizes exactly the tensors Wd ⊗Wd (this is the cuckoo variety).



3.   q2(Vd,d) , W-states and cuckoo varieties

qq2 (Vd,d) is the image of the map:

P1*×P1*×P1*×P1* q2 (Vd,d) , with: (ms, as, mt, bt ) ms
d-1asmt

d-1bt

(For given ms, mt the image is a quadric inside <nd,d(Z(P))> ≅ P3 ).

So qq2 (Vd,d) has dimension 4 and (for d >2) it is isomorphic to Q×Q , where
Q is a smooth quadric in P3.

In the case d=2, it is not hard to compute the ideal of qq2 (V2,2) into P8; it is
given by the 2×2- minors of the matrix:

M2 = 

𝑧0000 𝑧0001 𝑧0011

𝑧0100 𝑧0101 𝑧0111

𝑧1100 𝑧1101 𝑧1111

.

Which shows that qq2 (V2,2) is just the Segre variety s1,1 (P2×P2); actually it is
easy to check that qq2 (V2,2) = s1,1(t (V2) × t (V2)) = s1,1 (P2×P2).



3.   q2(Vd,d) , W-states and cuckoo varieties

Anyway, this can be generalized:

Remark: Any qq2 (Vd,d) = s1,1(t (Vd) × t (Vd)) ⊆ s1,1 (Pd×Pd) .

And qq2 (Vd,d) is 2-defective, but not as much as s1,1 (Pd×Pd) :

Proposition: Any s2 (qq2 (Vd,d)) , d >1 is defective, with defect =2 .

This can be seen via the standard way of Terracini’s Lemma, studying the
tangent space in two generic points of the variety. Moreover, trivially:

Proposition: The ideal of s2 (qq2(Vd,d)) is given by the 2×2- minors of the
(d+1)×(d+1)-minors of the matrix Md which has the (d+1)2 variables of the
space Sd C2 as entries and by the relations among the entries on each row
which define t (Vd) inside Pd.

The generalization to the case of more factors is on its way …
The proof that m-superfat points have degree mn works also in An .


