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This talk is based on an on-going project with:
I K. Furukawa (Josai Univ.) (arXiv:2111.03254).
I (a new version will be appeared soon)



Secant variety

In the talk, we work over C, the field of complex numbers.

Let X ⇢ PN be an embedded projective variety. The k-th secant variety
of X is defined as:

�k(X ) =

[

x1,...,xk2X

h x1, . . . , xk i ⇢ PN ,

where h x1, . . . , xk i ⇢ PN denotes the linear span of the points x1, . . . , xk
and the overline means the Zariski closure.

In particular, �1(X ) = X and �2(X ) has been often called just secant or
secant line variety of X in the literature.



Secant variety

This secant variety construction (more generally, the join construction of
subvarieties) is one of the most famous methods in classical algebraic
geometry. You can make a new variety from an old one.

But, still many fundamental questions for k-secants are open (e.g.
dimension, degree, singularity, equation and syzygies, identifiability, etc).
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Singular loci of secant variety

Today, we consider singular loci of �k(vdPV ), Sing(�k(vdPV )).

Knowledge on singularities of higher secant varieties is worthwhile and
important itself in the study of algebraic geometry.

Further, it is also known to be closely related to the identifiability
problem of structured tensors in applications.
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Singular loci of secant variety

Terracini’s lemma For an irreducible variety X ⇢ PV and for any
x1, . . . , xk 2 X and any y 2 hx1, · · · , xki, we have

Ty�k(X ) � hTx1X , . . . ,TxkX i

and “=” holds for general choices of x1, . . . , xk and y .

Proposition Sing(�k+1(X )) � �k(X ) unless �k+1(X ) is linear.

Proof) Choose any y 2 �k(X ). Then, by Terracini’s lemma, we see that
for any x 2 X

Ty�k+1(X ) � hTy�k(X ),TxX i
) Ty�k+1(X ) � hy ,X i � hX i = h�k+1(X )i

Since �k+1(X ) is not linear, dimTy�k+1(X ) > dim�k+1(X ) for any
y 2 �k(X ).
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Known results

As mentioned above, we have

Sing(�k(vd(Pn
))) ◆ �k�1(vd(Pn

)) .

We call a point p 2 �k(X ) non-trivial singular point if p /2 �k�1(X ) and
�k(X ) is singular at p, while the points belonging to �k�1(X ) are called
trivial singularity.

The following is known:
I First, it is classical that “=” is true for the binary case (i.e. n = 1)
I Also true for symmetric matrices (i.e. he case of quadratic forms

(i.e. d = 2)
I (k = 2) Kanev proved that this equality holds for any d , n.
I (k = 3, H. 2018) It was shown in that a non-trivial singularity can

happen and it is only when d = 4 and n � 3.
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Singular loci of k-secant of vd(Pn)

To sum up, we have

(k,d,n) Singular locus of �k(vd(Pn
))

(� 2,� 2, 1) �k�1
(� 2, 2,� 1) �k�1
(2,� 2,� 1) �1
(3, 3,� 2) �2
(3,� 4, 2) �2
(3, 4,� 3) D [ �2
(3,� 5,� 3) �2
(� 4,� 3,� 2) ??? Try to answer this!

Figure: Singular locus of �k(vd(Pn))



Remark on equations for �k(vd(Pn))

In principle, once a complete set of equations for higher secant variety is
attained, it is straightforward to check the singularity in some sense
(despite of its computational complexity).

But, only a few has been known on the defining equations of higher
secant varieties and it seems far from being understood completely at
this moment, even for the Veronese case (see the Table due to
Landsberg-Ottaviani for the state of art).
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Remark on equations for �k(vd(Pn))

Thus, with limited knowledge on the equations for secant varieties, it is
very difficult to determine singular loci in general.

So far, there has been no general idea or clear picture on the singular loci
of higher secant varieties of Veronese varieties yet.

In this work, we introduce some way to contribute this as investigating

“ Singular points from subsecant loci ”

It is mainly based on some geometric ideas on embedded tangent spaces
(Geometry) and on conormal space computations via flattenings
(Algebra).

It helps us to make a more visible picture on the singular loci of higher
secants.
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Back to 3-secant case

Theorem (H. 2018)

Let X = vd(Pn
) ⇢ PN ,N =

�n+d
n

�
� 1, d � 3. Sing(�3(X )) = �2(X )

except d = 4, n > 2. In the exceptional case, Sing(�3(X )) = �2(X ) [D,
where D 6⇢ �2(X ) is the locus of all degenerate forms in �3(X ).

For a P1 ⇢ Pn, we have

vd(P1
) ⇢ �3(vd(P1

)) ⇢ Pd
= hvd(P1

)i ⇢ PN .

I d > 4 : Pd ) �3(vd(P1
))

I d = 4 : P4
= �3(v4(P1

)) ) �2(v4(P1
))

I d < 4 : Pd
= �3(vd(P1

)) = �2(vd(P1
)) ⇢ �2(X )

) Trichotomy happens!
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Geometric description for the singular loci

From the previous theorem, we can give a geometric description for the
singular loci of 3-th secant of ⌫4(PV ) in the exceptional case (i.e.
dimV � 4) as cone locus.

Sing(�3(⌫4(PV )))

= �2(⌫4(PV )) [
� [

P1⇢PV
�3(⌫4(P1

))
 
=

[

P1⇢PV
h ⌫4(P1

) i

=
�
f 2 PS4V | f is any form which can be expressed using at most 2 vars

 
,

which is an irreducible 2 dimV -dimensional locus in the
(3 dimV � 1)-dimensional variety �3(⌫4(PV )).

This kind of a simple description of the singular locus can be attained in
few more cases.

) e.g. Sing(�4(⌫3(P4
))) is the locus of cubic forms with the number of

essential variables  3.
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Some terminology

For any given point p 2 �k(⌫d(Pn
)), as considering (1, d � 1)-symmetric

flattening, it is easy to see that for some 1  m  k � 1, 9 an m-plane
Pm ⇢ Pn such that p 2 �k(⌫d(Pm

)).

So, we call �k(⌫d(Pm
)) an m-subsecant variety of �k(⌫d(Pn

)) if
m < k � 1 & m < n i.e. m < min{k � 1, n} (often call it simply a
subsecant variety).

We also call the union of all subsecant varieties the subsecant loci of the
given k-th secant �k(⌫d(Pn

)), whereas p 2 �k(⌫d(Pm
)) is called a point

of full-secant loci if m = min{k � 1, n} and p does not belong both to
the subsecant loci and to the previous �k�1(⌫d(Pn

)).

) For k = 3, the only exceptional case on the singular loci of �3(⌫d(Pn
))

is given as the subsecant loci in it.
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Main result: m = 1 case
For 1-subsecant loci (i.e. m = 1), we obtain

Theorem A (Furukawa and H.)

Let ⌫d : Pn ! PN be the d-uple Veronese embedding with d � 3 and
N =

�n+d
d

�
� 1. If n � 2, k � 4 or n � 3, k � 3, then it holds that

(i) �k(⌫d(Pn
)) is smooth at every point in �k(⌫d(P1

)) \ �k�1(⌫d(Pn
)) if

k  d+1
2 ,

(ii) �k(⌫d(P1
)) ⇢ Sing(�k(⌫d(Pn

))), but �k(⌫d(P1
)) 6⇢ �k�1(⌫d(Pn

))

(i.e. non-trivial singularity) if k =
d+2
2 (only happens if d is even),

(iii) �k(⌫d(P1
)) ⇢ �k�1(⌫d(Pn

)) (i.e. trivial singularity) if k � d+3
2 ,

else if n = 2, k = 3, then it holds that
(iv) �3(⌫d(P2

)) is smooth at every point in �3(⌫d(P1
)) \ �2(⌫d(P2

))

when d � 4 and �3(⌫d(P1
)) ⇢ �2(⌫d(P2

)) in case d  3.

) This is a generalization of the result for k = 3 into any higher secant
of Veronese varieties.
) It also shows an interesting ‘trichotomy ’ phenomenon.
) (iv) is the exceptional case to the trichotomy (singular ! smooth
when d = 4)



Main result: m = 2 case
Theorem A’ (Furukawa and H.)

Let d � 3, n � 3, N =
�n+d

d

�
� 1 and k � 4. If (k , n) 6= (4, 3), then

(i) �k(⌫d(Pn
)) is smooth at a general point in

�k(⌫d(P2
)) \ �k�1(⌫d(Pn

)) if k  (
d+2

2 )

3 with d 6= 4, 6, k = 4 when
d = 4, or k  8 when d = 6,

(ii) �k(⌫d(P2
)) ⇢ Sing(�k(⌫d(Pn

))), but �k(⌫d(P2
)) 6⇢ �k�1(⌫d(Pn

))

(i.e. non-trivial singularity) if (
d+2

2 )

3 < k <
(
d+2

2 )

3 + 1 with d 6= 4, 6,
5  k  6 when d = 4, or k = 9 when d = 6,

(iii) �k(⌫d(P2
)) ⇢ �k�1(⌫d(Pn

)) if k � (
d+2

2 )

3 + 1 with d 6= 4, 6, k � 7
when d = 4, or k � 10 when d = 6,

else if k = 4, n = 3, then it holds that
(iv) �4(⌫d(P3

)) is smooth at every point in �4(⌫d(P2
)) \ �3(⌫d(P3

))

when d = 3 and �4(⌫d(P3
)) is smooth at a general point in

�4(⌫d(P2
)) \ �3(⌫d(P3

)) in case d � 4.

) The ‘general point condition’ in (i) can not be removed.
) d = 3 in (iv) also shows exceptional behavior to the trichotomy
(checked via equations from prolongation!).



Main result : non-defective subsecant

For an m-subsecant �k(⌫d(Pm
)) of �k(⌫d(Pn

)) with any m � 2, we prove

Theorem B

Let X = �k(⌫d(Pn
)), n � 3, d � 3, k � 4, and let Pm ⇢ Pn be an

m-plane with 2  m < min{k � 1, n}. Assume that (d ,m) is not one of
(3, 4), (4, 2), (4, 3) or (4, 4). Then, it holds that
(i) X is smooth at a general point in �k(⌫d(Pm

)) \ �k�1(⌫d(Pn
)) if

k  (
m+d
m )

m+1 unless (k , d ,m) = (9, 6, 2), (9, 3, 5) .
(ii) �k(⌫d(Pm

)) is a non-trivial singular locus of �k(⌫d(Pn
)) (i.e.

�k(⌫d(Pm
)) ⇢ Sing(�k(⌫d(Pn

))), but �k(⌫d(Pm
)) 6⇢ �k�1(⌫d(Pn

)))

if (
m+d
m )

m+1 < k <
(
m+d
m )

m+1 + 1 or (k , d ,m) = (9, 6, 2), (9, 3, 5)
and if a condition (⇤) is satisfied. In particular, this does not appear

if the divisibility (
m+d
m )

m+1 2 N is satisfied.
(iii) �k(⌫d(Pm

)) ⇢ �k�1(⌫d(Pn
)) (i.e. trivial singularity of �k(⌫d(Pn

))) if

k � (
m+d
m )

m+1 + 1 or (k , d ,m) = (10, 6, 2), (10, 3, 5) .



Main result : non-defective subsecant

The condition (⇤) is

(1) n � m + 2 or (2) n = m + 1 &

✓
m + d � 2

m

◆
� k �m + 2 .

I If m = 2, d � 4 or m � 3, d � 3+
p

4m+5
2 , then

�m+d�2
m

�
� k �m+ 2

is satisfied under the situation of (ii).
I Further, (d ,m) also should satisfy m  k � 2 and the condition of

(ii), (
m+d
m )

m+1 < k <
(
m+d
m )

m+1 + 1. So, the condition (⇤) is not valid only
for very few (d ,m)’s.

I For instance, if m  4, there is only one case (d ,m) = (3, 2) out of
(⇤), which gives another exceptional case (k , d , n,m) = (4, 3, 3, 2) to
the trichtomy.



Main result : defective subsecant

For the cases of (d ,m) = (3, 4), (4, 2), (4, 3) or (4, 4), we have the
following theorem.

Theorem C

In the same situation as Theorem 1, if (d ,m) = (3, 4), (4, 2), (4, 3) or
(4, 4), then we have
(i) �k(⌫d(Pn

)) is smooth at a general point in

�k(⌫d(Pm
)) \ �k�1(⌫d(Pn

)) if k  b (
m+d
m )

m+1 c � 1 .
(ii) �k(⌫d(Pm

)) is a non-trivial singular locus of �k(⌫d(Pn
)) if

b (
m+d
m )

m+1 c  k  d (
m+d
m )

m+1 e+ 1 .
(iii) �k(⌫d(Pm

)) ⇢ �k�1(⌫d(Pn
)) (i.e. trivial singularity) if

k � d (
m+d
m )

m+1 e+ 2 .



Main result : defective subsecant

Theorem C

(d,m) Generic smooth (i) Non-trivial Sing. (ii) Trivial Sing. (iii)
(3, 4) k  6 7  k  8 k � 9
(4, 2) k  4 5  k  6 k � 7
(4, 3) k  7 8  k  10 k � 11
(4, 4) k  13 14  k  15 k � 16



k-secant via incidence variety

For d-uple Veronese embedding ⌫d : Pn ! PN with N =
�n+d

d

�
� 1, we

regard the incidence variety I ⇢ PN ⇥ (Pn
)
k to be the (Zariski) closure of

I 0 := {(a, x 01, . . . , x 0k) | a 2 h x1, . . . , xk i and dimh x1, . . . , xk i = k � 1} ,

where we write xi = ⌫d(x 0i ) for x 0i 2 Pn.

We have p(I ) = �k(⌫d(Pn
)). and dim I = nk + k � 1 by considering

general fibers of q : I ! (Pn
)
(k).
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Main idea

Let Z ,X ⇢ PN be projective varieties of dimensions m, n. Suppose
Z ⇢ X and Z ⇢ P� , where P� is a �-plane of PN (i.e. Z is degenerate).
Let’s also consider a similar incidence variety I ⇢ P� ⇥ (Z )k for Z .

) in our case, X = ⌫d(Pn
),Z = ⌫d(Pm

).
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Tangents on subsecant loci

Now, we estimate the dimension of span of moving tangents.

As changing homogeneous coordinates t0, t1, . . . , tm, u1, u2, . . . , um0 on
Pn with m0

:= n �m, we may assume that Pm is the zero set of
u1, . . . , um0 and that on the affine open subset {t0 6= 0}, the Veronese
embedding ⌫d : Pn ! PN is parametrized by monomials of
C[t1, . . . , tm, u1, . . . , um0 ] of degree  d . Let x = ⌫d(x 0) with
x 0 2 {t0 6= 0} ⇢ Pn. Then Tx⌫d(Pn

) ⇢ PN coincides with

2

666666666666664

⌫d
@⌫d/@t1

.

.

.

@⌫d/@tm
@⌫d/@u1

.

.

.

@⌫d/@um0

3

777777777777775

(x0) =

2

66666666666666664

mono[t]d u1 · mono[t]d�1
. . . um0 · mono[t]d�1

⇤
(mono[t]d )t1 u1 · (mono[t]d�1

)t1 . . . um0 · (mono[t]d�1
)t1 ⇤

.

.

.

.

.

.

.

.

.

.

.

.

(mono[t]d )tm u1 · (mono[t]d�1
)tm . . . um0 · (mono[t]d�1

)tm ⇤
O mono[t]d�1

. . . O ⇤

.

.

.

.
.
.

.

.

.

O O . . . mono[t]d�1
⇤

3

77777777777777775

(x0)

, where mono[t]e denotes the set of monomials f 2 C[t1, . . . , tm] with
deg f  e and (mono[t]e)ti {@f /@ti | f 2 mono[t]e} and O is a zero
matrix with suitable size.



Tangents on subsecant loci
In particular, in case of x 0 2 Pm

= {u1 = · · · = um0 = 0}, we see that the
matrix is of the form

2

66666666666666664

mono[t]d O . . . O O

(mono[t]d )t1 O . . . O O

.

.

.

.

.

.

.

.

.

.

.

.

(mono[t]d )tm O . . . O O

O mono[t]d�1
. . . O O

.

.

.

.
.
.

.

.

.

O O . . . mono[t]d�1
O

3

77777777777777775

(x0) .

As a consequence, we derive a key proposition

Proposition I (estimate on span of moving embedded tangents)

Let ⌫d : Pn ! PN be the d-uple Veronese embedding. For an m-plane
Pm ⇢ Pn, for a (possibly reducible) subset A ⇢ Pm, and for a linear
variety ⇤ ⇢ h ⌫d(Pm

) i,

dimh⇤[
[

x2⌫d (A)

Tx⌫d(Pn) i � dimh⇤[⌫d(A) i+(n�m)
�
1+dimh ⌫d�1,m(A) i

�
· · · (⇤)

, where ve,m : Pm ! P(
m+e
e )�1 is the e-th Veronese embedding of Pm.



Tangents on subsecant loci

Another key proposition is

Proposition II

Let Z = ⌫d(Pm
) ⇢ P� with d � 3, 2  m  k � 2, and � =

�m+d
m

�
� 1.

Assume that dim(�k�1(Z )) = (k � 1)m + k � 2 < �. Let I ⇢ P� ⇥ (Z )k

be the previous incidence, (a, x1, . . . , xk) 2 I be a general point, and let
F ⇢ I be an irreducible component of p�1

(a) containing (a, x1, . . . , xk).
For the preimage A ⇢ Pm of qi (F ) [ {x1, . . . , xk} ⇢ Z under
⌫d : Pm ' Z , if (d ,m) 6= (3, 2), then we have

dimh ⌫d�1,m(A) i � k � 1 + (km + k � 1)� dim�k(Z )

for each i with 1  i  k .

Note that we can improve the low bound for dimh ⌫d�1,m(A) i according
to the situation of (k , d ,m).
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Tangents on subsecant loci
Proof of Proposition II) Set s = dim�k(Z ). Then, in our situation
dim q1(F ) = (km + k � 1)� s.
Let q1(F )0 ⇢ Pm be the preimage of q1(F ) ⇢ Z under ⌫d : Pm ' Z , and
let A = q1(F )0 [ {x 01, . . . , x 0k} ⇢ Pm. Let ⌫d�1 = ⌫d�1,m : Pm ! P�d�1 be
the (d � 1)-uple Veronese embedding with �d�1 =

�m+d�1
m

�
� 1. Then

the (k � 1)-plane h ⌫d�1(x 01), . . . , ⌫d�1(x 0k) i is contained in

h ⌫d�1(A) i = h ⌫d�1(q1(F )
0
) [ {⌫d�1(x

0
1), . . . , ⌫d�1(x

0
k)} i

and is of codimension e = dimh ⌫d�1(A) i � (k � 1). We can also show
codim(⌫d�1(Pm

),P�d�1) � k . So, by a generalization of Trisecant
lemma,

⌫d�1(Pm
) \ h ⌫d�1(x

0
1), . . . , ⌫d�1(x

0
k) i = {⌫d�1(x

0
1), . . . , ⌫d�1(x

0
k)} .

In particular, dim(⌫d�1(q1(F )0) \ h ⌫d�1(x 01), . . . , ⌫d�1(x 0k) i) = 0. On the
other hands, in h ⌫d�1(A) i, we have

0 = dim(⌫d�1(q1(F )
0
) \ h ⌫d�1(x

0
1), . . . , ⌫d�1(x

0
k) i) � dim(⌫d�1(q1(F )

0
))� e.

Hence
dim(h ⌫d�1(A) i) � k�1+dim(⌫d�1(q1(F )0)) = k�1+(km+k�1)� s.



Idea of proof for non-trivial Singularity (ii)

Basically, part (ii) corresponds to km + k � 1 > �, �k(⌫d(Pm
)) = P� ,

and dim(�k�1(⌫d(Pm
))) = (k � 1)m + k � 2 < �.

Now, suppose that �k(⌫d(Pm
)) 6⇢ Sing(�k(⌫d(Pn

))). Take a general
point (a, x1, . . . , xk) 2 I and an irreducible component F of p�1

(a)
containing (a, x1, . . . , xk). Then a 2 �k(⌫d(Pm

)) be a general (so,
smooth) point. By Terracini’s lemma, we have

h
[

x2qi (F )[{x1,...,xk}

Tx(⌫d(Pn
)) i ⇢ Ta(�k(⌫d(Pn

))). (1)

We take A = ⌫�1
d (qi (F ) [ {x1, . . . , xk}). By Propositions I and II to this

A and ⇤ = h ⌫d(Pm
) i = P� , the number (⇤) is less than or equal to

� + (n �m)(k + (km + k � 1)� �). From (1), we have

� + (n �m)(k + (km + k � 1)� �)  kn + k � 1.

Hence (n�m)((km+ k � 1)� �)  (km+ k � 1)� �. It contradicts the
assumption km + k � 1 > �, for example, if n � m + 2.



Singularity can happen at a special point

Let V = Chx , y , z ,wi � W = Chx , y , zi and f = x2y2
+ z4 be a form of

degree 4. Then, f represents a point in �4(⌫4(PW )) \ �3(⌫4(PV )). Note
that rank�2,2(f ) = 4 > 3.

Theorem B (i) shows that a general form in �4(⌫4(PW )) \ �3(⌫4(PV )) is
smooth. But, here we show that f is a singular point of �4(⌫4(PV )).

We know that the form fD = x2y2 has Waring rank 3 so that
fD = `41 + `42 + `43 for some `i 2 C[x , y ]1. By (H. 2018) fD is also a
singular point of �3(⌫4(PV )). Since f 2 hfD , z4i, using similar ideas
before, we see that

Tf �4(⌫4(PV )) ◆ h
[

`i2P1

T`i ⌫4(PV ),Tz4⌫4(PV )i ,

which implies dimTf �4(⌫4(PV )) � 16 = 12 + 3 + 1, greater than the
expect dimension 15.



4-th secant variety
As an application of our main results, we also consider the case of
singular loci of the fourth-secant variety of any Veronese embeddings.

Theorem D

Let ⌫d : Pn ! PN be the d-uple Veronese embedding with n � 3, d � 3,
and N =

�n+d
d

�
� 1. Then the followings hold.

(i) �4(⌫d(Pn
)) is smooth at every point which does not belong to

�3(⌫d(Pn
)) and any 2-subsecant �4(⌫d(P2

)) of �4(⌫d(Pn
)).

(ii) A general point in �4(⌫d(P2
)) \ �3(⌫d(Pn

)) is also a smooth point of
�4(⌫d(Pn

)) for d � 4. When d = 3 and n = 3, all points in
�4(⌫d(P2

)) \ �3(⌫d(Pn
)) are smooth. If d = 3, n � 4, then

�4(⌫d(P2
)) ⇢ Sing(�4(⌫d(Pn

))) and �4(⌫d(P2
)) 6⇢ �3(⌫d(Pn

)) (i.e.
non-trivial singularity).

(iii) �4(⌫d(P1
)) \ �3(⌫d(Pn

)) ⇢ Sm(�4(⌫d(Pn
))) if d � 7. When d = 6,

�4(⌫d(P1
)) ⇢ Sing(�4(⌫d(Pn

))), �4(⌫d(P1
)) 6⇢ �3(⌫d(Pn

)) (i.e.
non-trivial singularity) and �4(⌫d(P1

)) ⇢ �3(⌫d(Pn
)) when d  5.

Main ingridient: Normal forms due to Landsberg-Teitler (5 types), Young
flattening YF a

d1,d2,n
: SdV ! Sd1V ⌦ Sd2V ⌦

Va V ⇤ ⌦
Va+1 V



Non-singularity via Conormal space

Let X ⇢ PW be any variety. For any linear embedding W ,! A⌦ B and
the induced embedding X ⇢ PW ,! P(A⌦ B), it is well-known that for
any f 2 �k(X ) ⇢ P(A⌦ B), we have

N̂⇤
f �k(X ) ◆ ker(f )⌦ im(f )? = N̂⇤

f �p(Seg(PA⇥ PB)) in A⇤ ⌦ B⇤

provided that X ✓ �p(Seg(PA⇥ PB)), X * �p�1(Seg(PA⇥ PB)) and f
has rank k · p as a linear map in Hom(A⇤,B). Further, since
X ⇢ PW ⇢ P(A⌦ B), then as a subvariety of PW it holds that

N̂⇤
f �k(X ) ◆ ⇡(ker(f )⌦ im(f )?) = N̂⇤

f (�p(Seg(PA⇥ PB)) \ PW ) ,

where ⇡ : A⇤ ⌦ B⇤ ! W ⇤ is the dual map of W ,! A⌦ B .

If we apply this fact to a partial polarization SdV ,! SaV ⌦ Sd�aV (see
X = ⌫d(PV ) is contained in Seg(PSaV ⇥ PSd�aV ) in P(SaV ⌦ Sd�aV ),
i.e. p = 1 case), then



Non-singularity via Conormal space
Proposition

Suppose that f 2 SdV corresponds to a (closed) point of
�k(⌫d(PV )) \ �k�1(⌫d(PV )). Then, for any a with 1  a  b d+1

2 c with
rank�d�a,a(f ) = k we have

N̂⇤
[f ]�k(⌫d(PV )) ◆ (f ?)a · (f ?)d�a (2)

as a subspace of Td = SdV ⇤.

If applying it to SdV ,! Sd1V ⌦
Va V ⇤ ⌦ Sd2V ⌦

Va+1 V

Proposition

Let V = Cn+1 and f be any (closed) point of
�k(⌫d(PV )) \ �k�1(⌫d(PV )) in PSdV . Suppose YFa

d1,d2,n(f ) has rank
k
�n
a

�
as a linear map in Hom(Sd1V ⇤ ⌦

Va V , Sd2V ⌦
Va+1 V ). Then,

N̂⇤
f �k(⌫d(PV )) ◆ (kerYFa

d1,d2,n(f )) · (imYFa
d1,d2,n(f ))

? , (3)

where the right hand side is to be understood as the image of the
multiplication Sd1V ⇤ ⌦

Va V ⌦ Sd2V ⇤ ⌦
Va+1 V ⇤ ! SdV ⇤.
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Concluding Remark

As we mentioned before, each point p 2 �k(⌫d(Pn
)) \ �k�1(⌫d(Pn

)) is
located in �k(⌫d(Pm

)) \ �k�1(⌫d(Pn
)) for some 1  m  min{k � 1, n}.

To make the picture more complete, we have two future issues:

(i) For the subsecant loci (i.e. m < min{k � 1, n}), one needs to check
(non-)singularity not only at a general point but also at every point.
(ii) Smoothness of points in full-secant loci (i.e. m = min{k � 1, n})
should be answered.

Issue (i) is expected to be very complicated, because at a special point
(as shown in Example) singularity can also happen (in fact, we can
generate more singular examples using similar idea). For this case, in
general, one could not hope to find normal forms and the situation is
expected to be wild (in other words, the subsecant loci can’t be covered
with finitely many nice families of SL-orbits).
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Concluding Remark

Issue (ii) deals with case m = min{k � 1, n}. First, suppose n  k � 1.
Then m = n.
Example Let us consider �14(⌫8(P2

)). Take general 14 points on ⌫8(P2
).

Angelini-Chiantini (2019) showed an existence of a non-normal point to
�14(⌫8(P2

)) in the linear span of these points (note that this may
correspond to Part (i) of Theorem B if we take n = m = 2). Further, our
previous example also fits into this case even in a small k .

This might be happened due to a relatively low value n compared to k
(i.e. n  k � 1) Thus, a proper question for the full-secant loci is
probably such as
Question 1(full secant loci) Suppose k � 1  n and let D be the
subsecant loci of �k(⌫d(Pn

)). Are the points of
�k(⌫d(Pk�1

)) \
�
D [ �k�1(⌫d(Pn

))
�

all smooth in �k(⌫d(Pn
))?

Note that the answer to this question is affirmative in cases of k = 2
classically and k = 3 by (H. 2018) and k = 4 by Theorem D.
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Concluding Remark

Question 2(for other nice varieties) What about higher secants of other
varities (e.g. Segre, Segre-Veronese, Grassmannians, etc)? Can we do
similar things using the concept of ‘subsecant loci’?

For instance, the singular locus of 2-secant of Segre embedding (done by
Michalek-Oeding-Zwiernik(’15)) can be recovered by the same
perspective.



Thank you!


