New techniques for bounding stabilizer rank

Benjamin Lovitz* Vincent Steffan**

*NSF Postdoc, Northeastern University

**QMATH, University of Copenhagen

AGATES Kickoff Workshop

September 21, 2022

arXiv:2110.07781

Computational basis

• Let $\{|0\rangle, |1\rangle\} \subseteq \mathbb{C}^2$ be the computational basis for \mathbb{C}^2

$$|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix} \qquad |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$$

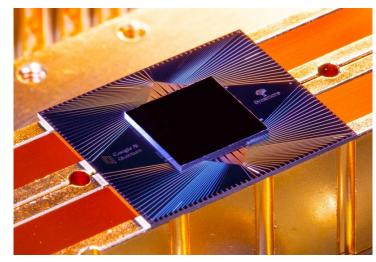
• Let $\{|x\rangle: x \in \mathbb{F}_2^n\} \subseteq (\mathbb{C}^2)^{\otimes n}$ be the computational basis for $(\mathbb{C}^2)^{\otimes n}$

$$|00\rangle = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} \qquad |01\rangle = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \qquad |10\rangle = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \qquad |11\rangle = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

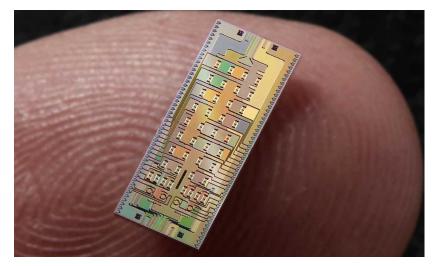
- A state is a unit vector in $(\mathbb{C}^2)^{\bigotimes n}$ (mod phase, i.e. an element of \mathbb{P}^{2^n-1}).
- We often omit normalization.
- States in \mathbb{C}^2 are called qubits.
- States are denoted $|\psi\rangle$, $|\phi\rangle$, etc.
- $\cdot \langle \psi |$ denotes conjugate-transpose of $|\psi \rangle$

General framework:

- 1. Prepare a computational basis state $|0 \cdots 0\rangle \in (\mathbb{C}^2)^{\otimes n}$.
- 2. Apply a unitary matrix $U|0\cdots 0\rangle$
- 3. Measure in the computational basis. For $x \in \mathbb{F}_2^n$, $p(x) = |\langle x|U|0 \cdots 0\rangle|^2$.



Google Sycamore superconducting qubit chip. n=53 qubits (with errors!!)



Xanadu X8 photonic chip n=8 qubits (with errors!!)

General framework:

- 1. Prepare a computational basis state $|0 \cdots 0\rangle \in (\mathbb{C}^2)^{\otimes n}$.
- 2. Apply a unitary matrix $U|0\cdots 0\rangle$
- 3. Measure in the computational basis. For $x \in \mathbb{F}_2^n$, $p(x) = |\langle x|U|0 \cdots 0\rangle|^2$.

The measurement destroys the state!

Need $\Omega(2^n)$ repetitions to approximate p.

Subtle power of quantum computer: You can sample from $p \in \mathbb{R}^{2^n}_+$

General framework:

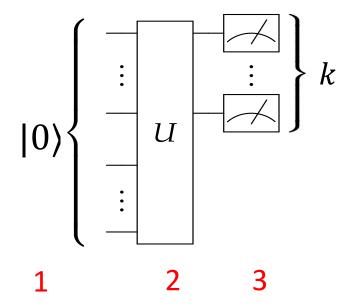
- 1. Prepare a computational basis state $|0 \cdots 0\rangle \in (\mathbb{C}^2)^{\otimes n}$.
- 2. Apply a unitary matrix $U|0\cdots 0\rangle$
- 3. Partially measure. For $x \in \mathbb{F}_2^k$, $p(x) = ||(\langle x | \otimes \mathbb{I})U|0 \cdots 0\rangle||^2$

Partial measurement only partially destroys the state.

Leftover state is $\frac{1}{\sqrt{p(x)}}(\langle x|\otimes \mathbb{I})U|0\cdots 0\rangle\in (\mathbb{C}^2)^{\bigotimes n-k}.$ Normalization

General framework:

- 1. Prepare a computational basis state $|0\rangle \in (\mathbb{C}^2)^{\otimes n}$.
- 2. Apply a unitary matrix $U|0\rangle$
- 3. Measure in the computational basis. For $x \in \mathbb{F}_2^k$, $p(x) = ||(\langle x | \otimes \mathbb{I})U|0\rangle||^2$

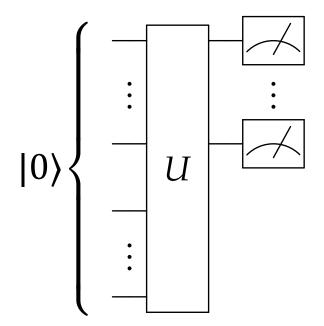


This talk: Classical simulation of Clifford+T circuits via stabilizer rank

This talk: Classical simulation of Clifford+T circuits via stabilizer rank

Classical simulation of quantum circuits

Question: Given a classical description of a quantum circuit

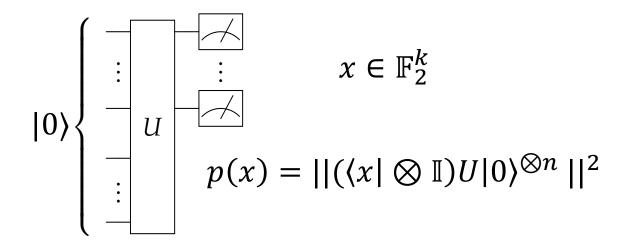


Can it be simulated efficiently on a classical computer?

Types of simulation

Strong simulation:

Compute p(x) for all $x \in \mathbb{F}_2^k$.



• *ε*-Strong simulation:

Find a probability vector \tilde{p} such that

$$(1 - \epsilon)p(x) \le \tilde{p}(x) \le (1 + \epsilon)p(x)$$
 for all $x \in \mathbb{F}_2^k$.

Weak simulation:

Sample elements of $x \in \mathbb{F}_2^k$ from a probability distribution \tilde{p} such that $\|\tilde{p} - p\|_1 \le \epsilon$

This talk: Classical simulation of Clifford+T circuits via stabilizer rank

Clifford circuits

The Clifford group is the group of unitaries $U: (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes n}$ generated by the Clifford gates

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \qquad CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

... and global phases $U(1) = \{e^{i\theta} : \theta \in [0,2\pi)\}$

The Pauli group on \mathbb{C}^2 is the group of unitaries $U:\mathbb{C}^2\to\mathbb{C}^2$ generated by the Pauli gates

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad iI_2 = i \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- As an abstract group, the Pauli group on \mathbb{C}^2 is the central product $C_4 \circ D_4$.
- The Clifford group is the normalizer of the n-fold tensor product of the unitary Pauli group.
- Open problem: Character table for Clifford group?

Why Clifford circuits?

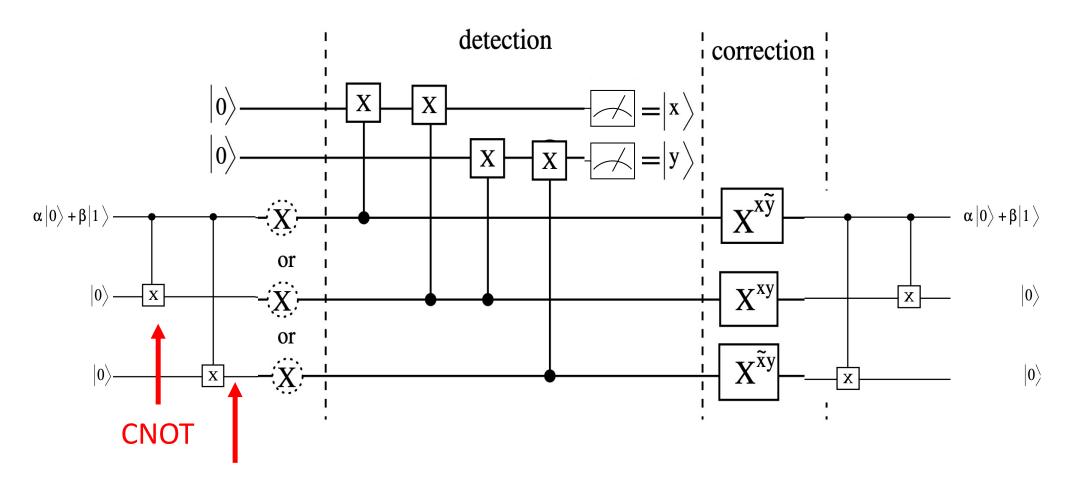
1. Implementation

2. Error correction

3. Clifford + any other gate is dense in the unitary group

4. Standard set of gates

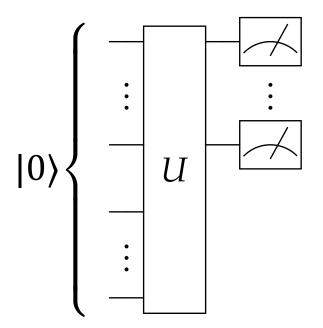
Correcting an
$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 error with Clifford circuit



$$\alpha |000\rangle + \beta |111\rangle$$

Classical simulation of Clifford circuits

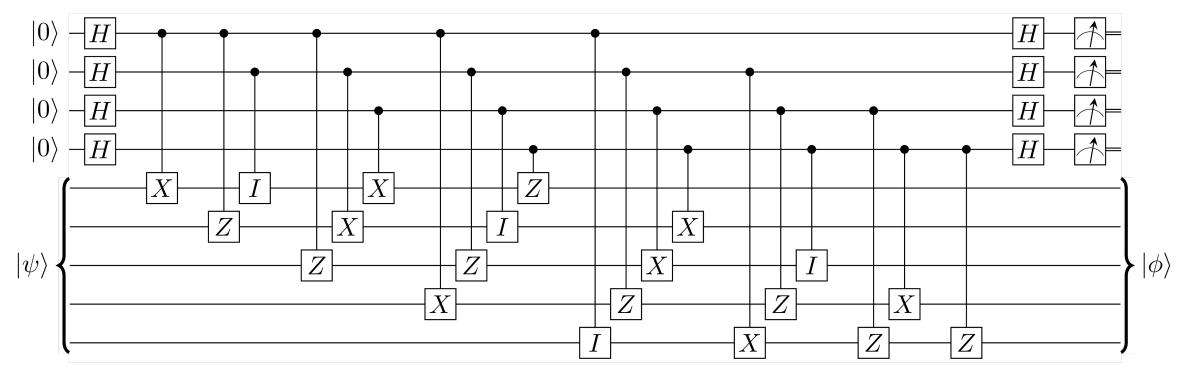
Question: Given a classical description of a Clifford circuit



Can it be simulated efficiently on a classical computer?

Classical simulation of Clifford circuits

Question: Given a classical description of a Clifford circuit



Can it be simulated efficiently on a classical computer?

[Gottesman-Knill 98]: Yes. Clifford circuits can be efficiently simulated.

... Strongly, weakly, and ϵ -strongly

... Even the leftover state $\frac{1}{\sqrt{p(x)}}(\langle x|\otimes \mathbb{I})U|0\cdots 0\rangle$ can be computed (and represented) efficiently!

Clifford+T circuits

The Clifford+T group is the unitary group $U: (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes n}$ generated by the Clifford gates

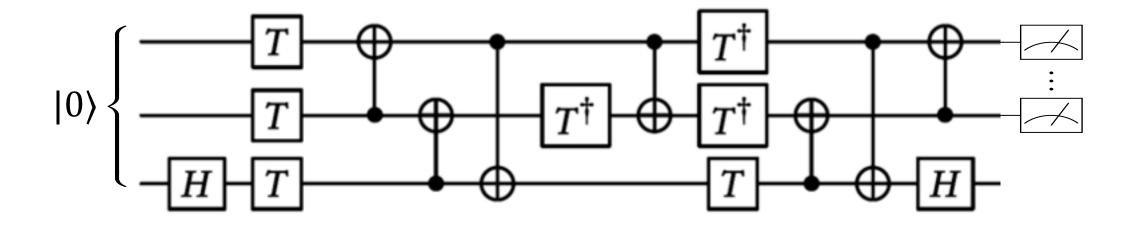
$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \qquad CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

and T-gates

$$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}.$$

Classical simulation of Clifford+T circuits

Question: Given a classical description of a Clifford+T circuit



Can it be simulated efficiently on a classical computer?

General framework:

- 1. Prepare a computational basis state $|0 \cdots 0\rangle \in (\mathbb{C}^2)^{\otimes n}$.
- 2. Apply a small number of Clifford+T gates $U_1U_2 \dots U_{O(n^l)}|0 \dots 0\rangle$
- 3. Measure in the computational basis. For $x \in \mathbb{F}_2^n$, $p(x) = \left| \langle x | U_1 U_2 \dots U_{O(n^l)} | 0 \dots 0 \rangle \right|^2$.

Subtle power of quantum computer: Can apply $U_1U_2 \dots U_{O(n^l)}$ efficiently, and sample from $p \in \mathbb{R}^{2^n}_+$.

This talk: Classical simulation of Clifford+T circuits via stabilizer rank

Partial answer: Stabilizer rank

- A state $|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}$ is a stabilizer state if $|\phi\rangle = U|0\rangle^{\otimes n}$ for some Clifford circuit U.
- The stabilizer rank of a state $|\psi\rangle \in (\mathbb{C}^2)^{\otimes n}$, denoted $\chi(|\psi\rangle)$, is the minimum number r for which

$$|\psi\rangle = \sum_{i=1}^{r} c_i |\phi_i\rangle$$

for some $c_i \in \mathbb{C}$ and $|\phi_i\rangle$ stabilizer states.

• The δ -approximate stabilizer rank of $|\psi\rangle$ is $\chi_{\delta}(|\psi\rangle) = \min\{\chi(|\mu\rangle): ||\psi\rangle - |\mu\rangle|| \leq \delta\}.$

Partial answer: Stabilizer rank $|H\rangle = |0\rangle + (1+\sqrt{2})|1\rangle \approx |0\rangle + 2.41|1\rangle$

[Bravyi-Smith-Smolin 16, Bravyi-Gosset 16]: A Clifford+T circuit with n T-gates can be simulated...

- Strongly with cost quadratic in $\chi(|H\rangle^{\otimes n})$. Compute p(x) for all $x \in \mathbb{F}_2^k$ $|0\rangle \begin{cases} \vdots & x \in \mathbb{F}_2^k \\ \vdots & p(x) = ||(\langle x| \otimes \mathbb{I})U|0\rangle^{\otimes n}||^2 \end{cases}$
- $\underline{\epsilon}$ -Strongly with cost linear in $\chi(|H\rangle^{\otimes n})$. Find a probability vector \tilde{p} such that $(1 - \epsilon)p(x) \leq \tilde{p}(x) \leq (1 + \epsilon)p(x)$
- Weakly with cost linear in $\chi_{\delta}(|H\rangle^{\otimes n})$.

 Sample elements of $x \in \mathbb{F}_2^k$ from a probability distribution \tilde{p} such that $\|\tilde{p} p\|_1 \le \epsilon$

Proof idea

[GK98]: Clifford circuits can be efficiently simulated.

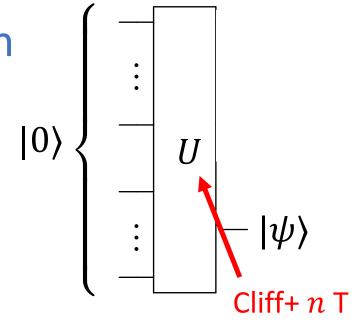
$$-\boxed{T} - = (\mathbb{I} \otimes \langle 1|) U_{\text{Cliff}}(\mathbb{I} \otimes |H\rangle)$$

$$-T = \frac{S^{+}}{|H\rangle - H} - \frac{S^{+}}{|1\rangle}$$

So
$$T|0\rangle = (\mathbb{I} \otimes \langle 1|)U_{\text{Cliff}}(|0\rangle \otimes |H\rangle)$$

$$= (\mathbb{I} \otimes \langle 1|)U_{\text{Cliff}}(|0\rangle \otimes |0\rangle)$$

$$+ (1 + \sqrt{2})(\mathbb{I} \otimes \langle 1|)U_{\text{Cliff}}(|0\rangle \otimes |1\rangle)$$



Proof idea

[GK98]: Clifford circuits can be efficiently simulated.

$$-\boxed{T} - = (\mathbb{I} \otimes \langle 1|) U_{\text{Cliff}}(\mathbb{I} \otimes |H\rangle)$$

Let
$$r = \chi(|H\rangle^{\otimes n})$$
 and $|H\rangle^{\otimes n} = \sum_{i=1}^{r} c_i |\phi_i\rangle$.
 $|\psi\rangle = (\mathbb{I} \otimes \langle 1 \dots 1|) U_{\text{Cliff}}(|0\rangle \otimes |H\rangle^{\otimes n})$
 $= \sum_{i=1}^{r} c_i (\mathbb{I} \otimes \langle 1 \dots 1|) U_{\text{Cliff}}(|0\rangle \otimes |\phi_i\rangle)$

By [GK98], can simulate each efficiently.

Known bounds on stabilizer rank

$$\chi(|H\rangle^{\otimes n})$$

- [Huang-Newman-Szegedy 20]: $\chi(|H\rangle^{\otimes n}$) super-polynomial unless P=NP.
- [Bravyi-Smith-Smolin 16]: $\chi(|H\rangle^{\otimes n}) \ge \Omega(\sqrt{n})$.
- [Peleg-Shpilka-Volk 21]: $\chi(|H\rangle^{\otimes n}) \ge \Omega(n)$.
- [Qassim-Pashayan-Gosset 21]: $\chi(|H\rangle^{\otimes n}) \le 2^{\alpha n}$, where $\alpha = \frac{1}{4}\log_2(3)$.

$\chi_{\delta}(|H\rangle^{\otimes n})$

This talk: Alternate proofs up to log factor

• [Peleg-Shpilka-Volk 21]:

There exists $\delta > 0$ such that $\chi_{\delta}(|H\rangle^{\otimes n}) \geq \Omega(\sqrt{n}/\log n)$

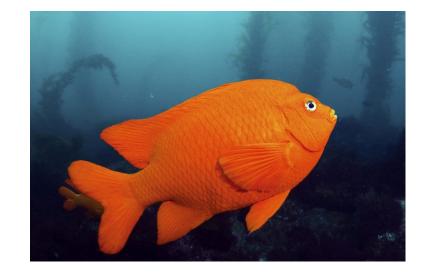
• [Bravyi-Gosset 16]: $\chi_{\delta}(|H\rangle^{\otimes n}) \leq O\left(\frac{1}{\delta^2}2^{\alpha m}\right)$, where $\alpha \approx 0.228$.

Rest of talk

- $\chi(|H\rangle^{\otimes n}) \geq \Omega(n/\log n)$. There exists $\delta > 0$ such that $\chi_{\delta}(|H\rangle^{\otimes n}) \geq \Omega(\sqrt{n}/\log n)$.

Upper bounds

Generic stabilizer rank



Match [Peleg, Shpilka, Volk 22] up to log factor

Fact: If $|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}$ is a stabilizer state, then the coordinates of $|\phi\rangle$ are $\{0, \pm 1, \pm i\}$ (up to normalization).

Theorem [Dehaene, De Moor 03]:

$$|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}$$
 is a stabilizer state $\iff |\phi\rangle = \sum_{x \in A} i^{l(x)} (-1)^{q(x)} |x\rangle$,

where $A \subseteq \mathbb{F}_2^n$ is an affine linear subspace

 $l: \mathbb{F}_2^n \to \mathbb{F}_2$ is a linear function

 $q: \mathbb{F}_2^n \to \mathbb{F}_2$ is a quadratic polynomial

Most results on stabilizer rank, and modern proofs of [GK98], use this characterization!

Subset-sum representations

- Let $\alpha \in \mathbb{C}^k$, $\beta \in \mathbb{C}^r$. We say β is a subset-sum representation of α if each α_j is equal to the sum of some subset of $\{\beta_1, \dots, \beta_r\}$.
- Example: $\beta = (1,2)$ is a subset-sum representation of $\alpha = (1,2,3)$.
- Example: If $|\psi\rangle = \sum_{i=1}^r c_i |\phi_i\rangle$ is a stabilizer decomposition, then $\beta = (c_1, \ldots, c_r, -c_1, \ldots, -c_r, ic_1, \ldots, ic_r, -ic_1, \ldots, -ic_r) \in \mathbb{C}^{4r}$ is a subset-sum representation of $|\psi\rangle$.

 $|\phi_i\rangle$ stabilizer \Rightarrow coordinates are in $\{0, \pm 1, \pm i\}$

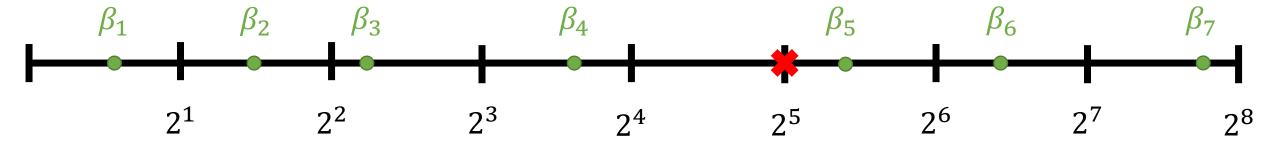
$$\Rightarrow \chi(|\psi\rangle) \ge \frac{1}{4} \cdot \text{(the size of the smallest subset-sum rep of } |\psi\rangle)$$

Lower bounds on the size of a subset-sum rep

- Let $\alpha \in \mathbb{C}^k$, $\beta \in \mathbb{C}^r$. We say β is a subset-sum representation of α if each α_j is equal to the sum of some subset of $\{\beta_1, \dots, \beta_r\}$.
- Trivially, $r \ge \log_2 k$, since $\{\beta_1, \dots, \beta_r\}$ has just 2^r different subsets.

 $\sim \alpha$ exponentially increasing

- Theorem [Moulton 01]: If $2|\alpha_j| \le |\alpha_{j+1}|$ for all $j \in \{1, ..., k-1\}$, then $r \ge k/\log_2 k$.
 - Linear in k, instead of logarithmic!
- Example: If $\alpha = (2^1, 2^2, ..., 2^k)$, then $r \ge k/\log_2 k$



Lower bounds on the size of a subset-sum rep

- Let $\alpha \in \mathbb{C}^k$, $\beta \in \mathbb{C}^r$. We say β is a subset-sum representation of α if each α_j is equal to the sum of some subset of $\{\beta_1, \dots, \beta_r\}$.
- Trivially, $r \ge \log_2 k$, since $\{\beta_1, \dots, \beta_r\}$ has just 2^r different subsets.

 $\sim \alpha$ exponentially increasing

- Theorem [Moulton 01]: If $2|\alpha_j| \le |\alpha_{j+1}|$ for all $j \in \{1, ..., k-1\}$, then $r \ge k/\log_2 k$.
 - \sim Linear in k, instead of logarithmic!
- Example: If $\alpha = (2^1, 2^2, ..., 2^k)$, then $r \ge k/\log_2 k$
- Theorem [Lovitz-Steffan]: If the coordinates of $|\psi\rangle$ contain an exponentially increasing sequence of length k, then $\chi(|\psi\rangle) \ge k/(4\log_2 k)$.

Lower bound on stabilizer rank

• Theorem [Lovitz-Steffan]: If the coordinates of $|\psi\rangle$ contain an exponentially increasing sequence of length k, then $\chi(|\psi\rangle) \ge k/(4\log_2 k)$.

Corollary [Lovitz-Steffan]: $\chi(|H\rangle^{\otimes n}) \geq n/(4 \log_2 n)$.

Proof: Since $|H\rangle \approx |0\rangle + 2.41|1\rangle$, $|H\rangle^{\bigotimes n} \approx |0\cdots 0\rangle + (2.41)(|0\cdots 01\rangle + \cdots + |10\cdots 0\rangle) + \cdots + (2.41)^n|1\cdots 1\rangle.$

- $\Rightarrow |H\rangle^{\otimes n}$ contains the exponentially increasing sequence $(2.41,2.41^2,...,2.41^n)$
- $\Rightarrow \chi(|H\rangle^{\otimes n}) \ge n/(4\log_2 n)$ by boxed theorem.

Lower bound on approximate stabilizer rank

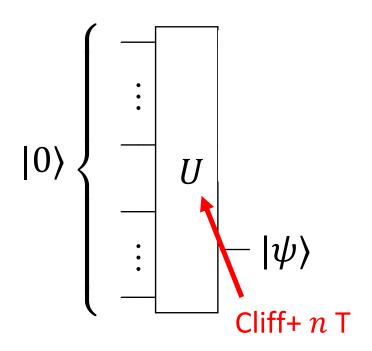
- The δ -approximate stabilizer rank of a normalized state $|\psi\rangle$ is $\chi_{\delta}(|\psi\rangle) = \min\{\chi(|\mu\rangle): ||\psi\rangle |\mu\rangle|| \leq \delta\}.$
- Theorem [Lovitz-Steffan]: There exists $\delta > 0$ for which $\chi_{\delta}(|H\rangle^{\otimes n}) \geq \sqrt{n}/(4\log_2\sqrt{n})$.

Proof sketch: Show that for δ small enough, any state that is δ -close to $|H\rangle^{\otimes n}$ must contain an exponentially increasing sequence of length \sqrt{n} (Use De Moivre-Laplace).

Result follows from boxed theorem.

[BSS16] idea:

The T-count of a state $|\psi\rangle$ is the minimum number n of T gates needed to prepare $|\psi\rangle$ with a Cliff+T circuit U



Fact: If $|\psi\rangle$ has T-count n, then $\chi(|\psi\rangle) \leq \chi(|H\rangle^{\otimes n})$. *Proof:*

$$-T - = (\mathbb{I} \otimes \langle 1|) U_{\text{Cliff}}(\mathbb{I} \otimes |H\rangle)$$

[BSS16] idea:

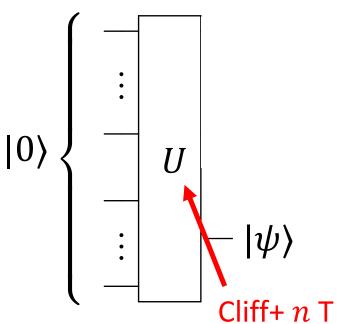
The T-count of a state $|\psi\rangle$ is the minimum number n of T gates needed to prepare $|\psi\rangle$ with a Cliff+T circuit U

T gates needed to prepare
$$|\psi\rangle$$
 with a Cliff+T circuit U \vdots $\underline{}$ Fact: If $|\psi\rangle$ has T-count n , then $\chi(|\psi\rangle) \leq \chi(|H\rangle^{\otimes n})$.

Proof:

Let
$$r = \chi(|H\rangle^{\otimes n})$$
 and $|H\rangle^{\otimes n} = \sum_{i=1}^r c_i |\phi_i\rangle$. $|\psi\rangle = (\mathbb{I} \otimes \langle 1 \dots 1|) U_{\text{Cliff}}(|0\rangle \otimes |H\rangle^{\otimes n})$ $= \sum_{i=1}^r c_i (\mathbb{I} \otimes \langle 1 \dots 1|) U_{\text{Cliff}}(|0\rangle \otimes |\phi_i\rangle)$

... so $\chi(|\psi\rangle) \leq r$. Stabilizer state!



Fact: If $|\psi\rangle$ has T-count n, then $\chi(|\psi\rangle) \leq \chi(|H\rangle^{\otimes n})$.

[BSS16] idea: For each n, if there exists a state $|\psi_n\rangle$ that:

- 1. Has T-count *n*
- 2. Satisfies $\chi(|\psi_n\rangle) \geq n^{1+\epsilon}$

... then
$$\chi(|H\rangle^{\otimes n}) \geq \chi(|\psi_n\rangle) \geq n^{1+\epsilon}$$
 Super-linear

Fact: If $|\psi\rangle$ has T-count n, then $\chi(|\psi\rangle) \leq \chi(|H\rangle^{\otimes n})$.

[BSS16] idea: For each n, if there exists a state $|\psi_n\rangle$ that:

- 1. Has T-count *n*
- 2. Every subset-sum rep of $|\psi_n\rangle$ has size at least $n^{1+\epsilon}$

... then
$$\chi(|H\rangle^{\otimes n}) \geq \chi(|\psi_n\rangle) \geq \frac{1}{4}n^{1+\epsilon}$$
 Super-linear

[Beverland-Campbell-Howard-Kliuchnikov 2020]: A state of T-count n can have an exponentially increasing sequence of length at most O(n).

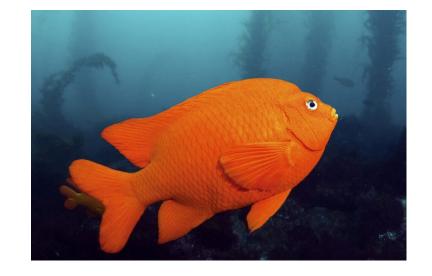
Rest of talk

Lower bounds

- $\chi(|H\rangle^{\otimes n}) \geq \Omega(n/\log n)$. There exists $\delta > 0$ such that $\chi_{\delta}(|H\rangle^{\otimes n}) \geq \Omega(\sqrt{n}/\log n)$.

<u>Upper bounds</u>

Generic stabilizer rank



Match [Peleg, Shpilka, Volk 22] up to log factor

Upper bounds: Generic stabilizer rank

- Let $\chi_n = \max\{\chi(|\psi\rangle^{\otimes n}): |\psi\rangle \in \mathbb{C}^2\}$ be the n-th generic stabilizer rank.
- $\chi_n \ge \max\{n+1, \chi(|H)^{\otimes n}\}$ Question: Super-linear lower bound on χ_n ?
- Fact: $\chi(|\psi\rangle^{\otimes n}) = \chi_n$ for all but finitely many $|\psi\rangle \in \mathbb{C}^2$ (up to scale).
- Proposition [Lovitz-Steffan]: $\chi_n=O\left(2^{n/2}\right)$ (Slight improvement of recent bound $O((n+1)2^{n/2})$ of [Qassim-Pashayan-Gosset 21])
- Fact: There exists a single set of χ_n stabilizer states that can be superimposed to produce any state of the form $|\psi\rangle^{\otimes n}$. Q: Describe such a set?

Summary

Classical simulation of Clifford+T circuits via stabilizer rank

Lower bounds

• $\chi(|H\rangle^{\otimes n}) \ge \Omega(n/\log n)$.

Match [Peleg, Shpilka, Volk 22] up to log factor

• There exists $\delta > 0$ such that $\chi_{\delta}(|H\rangle^{\otimes n}) \geq \Omega(\sqrt{n}/\log n)$.

Upper bounds

Generic stabilizer rank

New techniques for bounding stabilizer rank

Benjamin Lovitz* Vincent Steffan**

*NSF Postdoc, Northeastern University

**QMATH, University of Copenhagen

AGATES Kickoff Workshop

September 21, 2022

arXiv:2110.07781

