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Computational basis

* Let {|0),|1)} € C?be the computational basis for C*
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e Let {|x): x € F%} € (C?)®™ be the computational basis for (€2)®"
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* A state is a unit vector in (C?*)®™ (mod phase,
. n__
i.e. an element of P% ~1).

*We often omit normalization.
e States in C? are called qubits.
*States are denoted |Y), |@) , etc.

* (1| denotes conjugate-transpose of |)



Quantum circuits

General framework:

1. Prepare a computational basis state [0 --- 0) € (C?)®™,
2. Apply a unitary matrix U|0 --- 0)
3. Measure in the computational basis. For x € F%, p(x) = |{x|U|0 --- 0)|?.

Google Sycamore superconducting qubit chip. Xanadu X8 photonic chip
n=53 qubits (with errors!!) n=8 qubits (with errors!!)




Quantum circults

General framework:

1. Prepare a computational basis state [0 --- 0) € (C?)®™,
2. Apply a unitary matrix U|0 --- 0)
3. Measure in the computational basis. For x € F%, p(x) = |{x|U|0 --- 0)|?.

The measurement destroys the state!
Need QU(2") repetitions to approximate p.

Subtle power of quantum computer: You can sample from p € Rin



Quantum circults

General framework:

1. Prepare a computational basis state [0 ---0) € (C?)®™,

2. Apply a unitary matrix U|0 -+ 0)
3. Partially measure. For x € ]Fk,\%c) = [|({x] ® DHU|0--- 0) ||

k<n

Partial measurement only partially destroys the state.

Leftover state is



Quantum circults

General framework:

1. Prepare a computational basis state |0) € (C?)®™,
2. Apply a unitary matrix U|0)
3. Measure in the computational basis. For x € F¥, p(x) = ||({(x| @ DU|0)||?
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Classical simulation of guantum circuits

Question: Given a classical description of a quantum circuit

[ — A

0y | u -

\

Can it be simulated efficiently on a classical computer?



Types of simulation

e Strong simulation:

Compute p(x) for all x € FX. 10+

e ¢-Strong simulation:

Find a probability vector p such that

\

A

K
x € IF5

=y

p(x) = ||((x] ® DU|0)S™ ||

(1—-e)px) <px) <A +e)plx) forallx € FX.

e Weak simulation:

Sample elements of x € IF’Z‘ from a probability distribution p such that

1P —plly <€
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Clifford circuits

The Clifford group is the group of unitaries U: (C*)®" — (C?)®" generated by
the Clifford gates

1 100 0
H=ﬁ[1 Mos=[ ] CNOT=§ é § g

.. and global phases U(1) = {e'?: 0 € [0,2r)}



The Pauli group on C# is the group of unitaries U: C* — C*
generated by the Pauli gates

=lp ol z=lp A m=ily

» As an abstract group, the Pauli group on C? is the central
product C, o D,.

* The Clifford group is the normalizer of the n-fold tensor
product of the unitary Pauli group.

* Open problem: Character table for Clifford group?




Why Clitford circuits?

1. Implementation
2. Error correction

3. Clifford + any other gate is dense in the unitary group

4. Standard set of gates



Correcting an X = [(1) (1)] error with Clifford circuit

: detection | correction |
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https://young.physics.ucsc.edu/
150/error_corr.pdf



Classical simulation of Clifford circuits

Question: Given a classical description of a Clifford circuit
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Can it be simulated efficiently on a classical computer?



Classical simulation of Clifford circuits

Question: Given a classical description of a Clifford circuit
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Can it be simulated efficiently on a classical computer?




[Gottesman-Knill 98]: Yes. Clifford
circuits can be efficiently simulated.

... Strongly, weakly, and e-strongly

HU|[0---0)

... Even the leftover state

1
W((x\ &

can be computed (and represented) efficiently!



Clifford+T circuits

The Clifford+T group is the unitary group U: (C?)®" — (C?)®" generated by
the Clifford gates

1 1 00 0
1 0 0
H=ﬁﬂ Mos=[y Y CNOT=§ 0 0 1

and T-gates " 0
T = [O eiﬂ:/4] .



Classical simulation of Clifford+T circuits

Question: Given a classical description of a Clifford+T circuit
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Can it be simulated efficiently on a classical computer?
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Quantum circults

General framework:

1. Prepare a computational basis state [0 --- 0) € (C?)®™,
2. Apply a small number of Clifford+T gates U, U, ... UO(nz)lo -+ 0)

3. Measure in the computational basis. For x € [Fy, p(x) = |(x |u10, ...Uo(nl)‘o---O)‘z.

Subtle power of guantum computer: Can apply U, U, ... UO(nl)

efficiently, and sample from p € Rin.
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Partial answer: Stabilizer rank

* Astate |¢p) € (C?)®™ s a stabilizer state if |¢p) = U|0)Y®™ for some
Clifford circuit U.

* The stabilizer rank of a state [¢) € (C?)®", denoted x(|y)),
is the minimum number r for which

r

)= ) cildy)

=1

for some ¢; € C and |¢;) stabilizer states.

* The §-approximate stabilizer rank of |) is

xs([¥)) = min{)(|u)): lly) — (Wl = 8}



Partial answer: Stabilizer rank [#) = [0) + (1 +v2)[1) = |0) + 2.41|1)

[Bravyi-Smith-Smolin 16, Bravyi-Gosset 16} A Clifford+T circuit with n T-gates
can be simulated... ,

— A

K
x € IF5

e Strongly with cost quadratic in )((lH)®")- _ /74

10) < u
p(x) = ||((x] ® DU|0)S™ ||

Compute p(x) forall x € IF’Z‘

\

* -Strongly with cost linear in )((|H)®").
Find a probability vector p such that (1 — e€)p(x) < p(x) < (1 4+ e)p(x)

* Weakly with cost linear in )(5(|H)®").

Sample elements of x € IF’Z‘ from a probability distribution p such that
Ip —plly <€




| [GK98]: Clifford circuits can
Proof idea  |¢ efficiently simulated.

10) U
—AT— =0 (1)Ui(I X |H)) N \Y V)

Cliff+nT

SoT|0) = (I Q (1DUifr(10) Q [H))
= (I ® (1D Ucyi£e(10) @ [0))
+(1 +V2)(I @ (1DU()£e(10) @ |1))



| [GK98]: Clifford circuits can
Proof idea e efficiently simulated.

10) U
—AT— =0 (1)Ui(I X |H)) N \( V)

Cliff+nT

Let 7 = x(|H)®™) and |[H)®™ = XI_, ;| ;).
W) = I ® (1...1DUc)£(10) @ |HY®™)
=Yim1 (I ®(1... 1|)|U(jliff(|0'> ® i)

_ 770
=u®. . 10)
, o liff
By [GK98], can simulate each efficiently. .




Known bounds on stabilizer rank

x(1H)®™)

e [Huang-Newman-Szegedy 20]: )((IH)®") super-polynomial unless P=NP.
* [Bravyi-Smith-Smolin 16]: x(|H)®") = Q(/n).

* [Peleg-Shpilka-Volk 21]: x(|H)®") = Q(n).

* [Qassim-Pashayan-Gosset 21]: )(( H)®) < 29" where a = ilogz (3).

X5(|H>®n) This talk: Alternate proofs up to log factor

* [Peleg-Shpilka-Volk 21]: \

There exists § > 0 such that )(5(|H)®”) > 0(yn/logn)
* [Bravyi-Gosset 16]: Xs (IH)®") <0 (% 2“’"), where a =~ 0.228.




Rest of talk

== Lower bounds — — Match [Peleg, Shpilka, Volk 22] up to log factor
. )((lH)®") > Q(n/logn).
» There exists § > 0 such that y5 (|H)®") > Q(yn/logn).

Upper bounds

* Generic stabilizer rank

Image: https://fishingbooker.com/blog/california-state-fish-golden-trout-garibaldi/



Fact: If |@) € (C?)®™ is a stabilizer state,
then the coordinates of |¢) are
{0, +1, i} (up to normalization).




Theorem [Dehaene, De Moor 03]:

|p) € (C*)®" is a stabilizer state & |p) = Y.,.c4 (1) (—1)a®) | x),

where A € F% is an affine linear subspace
[: I}, — F, is alinear function

q: F} — [F, is a quadratic polynomial

Most results on stabilizer rank, and modern proofs of [GK98],
use this characterization!



Subset-sum representations

* Let @ € C*, B € C". We say B is a subset-sum representation of « if each a;
is equal to the sum of some subset of {f34, ..., B}

* Example: B = (1,2) is a subset-sum representation of « = (1,2,3).

« Example: If [Y) = XY.i_; ¢;|®;) is a stabilizer decomposition, then

= 4
g =(c,..,Cr,—Cq, ., —Cp,iCq, ..., iCpr, —ICq, ..., —iC,.) € C*T
is a subset-sum representation of |).
|@;) stabilizer =coordinates are in {0, 1, i}



Lower bounds on the size of a subset-sum rep

 Let @ € C¥, B € C". We say f3 is a subset-sum representation of « if each a;
is equal to the sum of some subset of {f4, ..., 5}

* Trivially, r = log, k, since {4, ..., B;-} has just 2" different subsets.
P exponentially increasing
* Theorem [Moulton 01]: If 2‘0(]-‘ < ‘a]-ﬂ‘ forallj € {1,...,k — 1}, then
r = k/log,k.

™ Linearin k, instead of logarithmic!

» Example: If @ = (21,272, ...,2%), thenr > k/log, k




Lower bounds on the size of a subset-sum rep

 Let @ € C¥, B € C". We say f3 is a subset-sum representation of « if each a;
is equal to the sum of some subset of {f4, ..., 5}

* Trivially, r = log, k, since {4, ..., B;-} has just 2" different subsets.
P exponentially increasing
* Theorem [Moulton 01]: If 2‘0(]-‘ < ‘a]-ﬂ‘ forallj € {1,...,k — 1}, then
r = k/log,k.

™ Linearin k, instead of logarithmic!

» Example: If @ = (21,272, ...,2%), thenr > k/log, k

* Theorem [Lovitz-Steffan]: If the coordinates of |Y) contain an exponentially
increasing sequence of length k, then y(|Y)) = k/(4log, k).




Lower bound on stabilizer rank

Corollary [Lovitz-Steffan]: ¥ (|H)Y®™) = n/(4 log, n).

Proof: Since |H) =~ |0) + 2.41|1),
IHY®™ % |0+ 0) + (2.41)(|0 - 01) + -+ [10 -+ 0)) + - + (2.41D)?|1 -+ 1).

= |H)®™ contains the exponentially increasing sequence (2.41,2.412, ..., 2.41™)

= y(|H)®™) = n/(4log,n) by boxed theorem.




Lower bound on approximate stabilizer rank

* The d-approximate stabilizer rank of a normalized state |Y) is

Xs([¥)) = min{x(|u)): llY) — )l < 63

e Theorem [Lovitz-Steffan]: There exists 6 > 0 for which

xs(IH)®™) = yn/(4log, V).

Proof sketch: Show that for 6 small enough, any state that is 6-close to
|H)Y®™ must contain an exponentially increasing sequence of length vn
(Use De Moivre-Laplace).

Result follows from boxed theorem. .




Super-linear lower bound on )((\H)@’")?

[BSS16] idea: |0) <

U
The T-count of a state |i) is the minimum number n of _ 1)
T gates needed to prepare |) with a Cliff+T circuit U

Cliff+nT

Fact: If |Y) has T-count n, then y(|Y)) < )((IH)®").
Proof:

—T— =R (1)U} Q [H))




Super-linear lower bound on )((\H)‘X’")?
[BSS16] idea: 10 4 U
The T-count of a state |y) is the minimum number n of _ \Y )

T gates needed to prepare |) with a Cliff+T circuit U

Cliff+nT
Fact: If |Y) has T-count n, then y(|Y)) < )((IH)®”).

Proof:
Letr = x(|H)®") and [H)®™ = YT_, c;|d;)-
Yy = T ® (1..1DUcif(10) ® [H)E™)

= Y1 Ci‘(H ® (1..1DUyi£e(10) &® |§bi>)’

sox(ly)) <r. Stabilizer state! .




Super-linear lower bound on )((\H)‘X’")?

Fact: If |¢) has T-count n, then y(|y)) < )((IH)®").

[BSS16] idea: For each n, if there exists a state |,,) that:

1. Has T-count n
2. Satisfies y(Jy,,)) = n'*€

.. then X(|H>®n) ? X(¥n)) 22 nite <+ Super-linear



Super-linear lower bound on )(( H)®")?

Fact: If |Y) has T-count n, then y(|Y)) < )(( H)®").

[BSS16] idea: For each n, if there exists a state |y,,) that:

1. Has T-count n

2. Every subset-sum rep of [1,,) has size at least n1*€

1
.. then X(|H>®n) ? x(¥n)) 22 Zn1+e“ Super-linear

[Beverland-Campbell-Howard-Kliuchnikov 2020]: A state of T-count n can have an
exponentially increasing sequence of length at most O(n).




Rest of talk

Lower bounds — — Match [Peleg, Shpilka, Volk 22] up to log factor
. )((lH)®") > Q(n/logn).
» There exists § > 0 such that y5 (|H)®") > Q(yn/logn).

== Upper bounds
e Generic stabilizer rank

Image: https://fishingbooker.com/blog/california-state-fish-golden-trout-garibaldi/



Upper bounds: Generic stabilizer rank

* Let y, = max{y(|)®"): [) € C?} be the n-th generic stabilizer rank.
* ¥, = max{n + 1,)((|H)®")}
* Fact: )((Il/))®") = x,, for all but finitely many |) € C? (up to scale).

* Proposition [Lovitz-Steffan]: y,, = 0(2"/2)
(Slight improvement of recent bound O((n + 1)2"/2) of [Qassim-Pashayan-Gosset 21])

* Fact: There exists a single set of y,, stabilizer states that can be superimposed
to produce any state of the form |1/))®".




Summary

Classical simulation of Clifford+T circuits via stabilizer rank

Lower bounds — Match [Peleg, Shpilka, Volk 22] up to log factor

&4~
. )((lH)®”) > Q(n/logn). /
* There exists § > 0 such that ys (IH)®") > 0(/n/logn).

Upper bounds

 Generic stabilizer rank

https://thumbs.dreamstime.com/b/goldfish-gold-fish-bowl-cute-cartoon-character-happy-145738808.jpg
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