
Tensor decompositions in classical and quantum
informatics

Piotr Gawron

AstroCeNT—Particle Astrophysics Science and Technology Centre
International Research Agenda

Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences

Warsaw, October 7, 2022

Outline

1 Motivation

2 Matrices
Matrix rank
Singular Value Decomposition
Quantum example
Approxmiation
Classical example

3 Tensors
Definitions and basic properties
Tensor ranks
Higher Order Singular Value Decomposition (HO-SVD)
Quantum example
Tensor approximations
Classical example

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 2 / 58

Section 1

Motivation

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 3 / 58

Motivation
The motivation for this work was to study the applications of tensor
decompositions in both:

the theory of quantum multi-partite entanglement and

classical signal processing.

The talk is based on: Romaszewski, Micha l, Piotr Gawron, and Sebastian
Opozda. 2013. ‘Dimensionality Reduction of Dynamic Mesh Animations
Using HO-SVD’. Journal of Artificial Intelligence and Soft Computing
Research 3 (4).

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 4 / 58

Section 2

Matrices

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 5 / 58

Matrix rank

The column rank of a matrix F is the maximum number of linearly
independent column vectors of F.

The row rank of F is the maximum number of linearly independent
row vectors of F.

A result of fundamental importance in linear algebra is that the
column rank and the row rank are always equal.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 6 / 58

Singular Value Decomposition

Every matrix F ∈ CI ,J can be written as the product

F = U · S · V†,

where

U ∈ CI ,I , V† ∈ CJ,J are unitary matrices,

S ∈ RI ,J matrix that is:
I pseudo-diagonal: S = diag(σ1, σ2, . . . , σmin(I ,J)),
I its elements are ordered: σ1 ≥ σ2 ≥ . . . ≥ σmin(I ,J) ≥ 0

The σi are singular values of F, columns of U are left singular vectors and
rows of V† are right singular vectors.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 7 / 58

SVD figure

F1 U1 S1 V1

F2 U2 S2 V2

=

=

Figure: Visualisation of SVD.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 8 / 58

SVD as rank revealing decompsition

Rank of a matrix F is equal to the number of its non-zero singular values
σi > 0. Matrix F can be written in the form

F =

rank (F)∑
i=1

σiU:,i ◦ V†:,i ,

where A = v ◦w, v ∈ CI ,w ∈ CJ ,A ∈ CI ,J , denotes outer product of
vectors v and w i.e.:

(A)i ,j = (v ◦w)i ,j = viwj , for 1 ≤ i ≤ I , 1 ≤ j ≤ J.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 9 / 58

SVD and pure states bi-partite entanglement

Any bi-partite quantum pure state can be written as:

|ψ〉 =

I ,J∑
i=1,j=1

ci ,j |i〉 |j〉 SVD=
∑
k

σk |fk〉 |ek〉 ,

where |fk〉 |ek〉 form orthonormal bases.

The number of non-zero singular values σk of (C)i ,j = ci ,j is often
called the Schmidt number of state |ψ〉.
Two pure bi-partite quantum states have the same entanglement
structure if they have same singular values.

Shanon entropy of σk is an entanglement measure of quantum states
states i.e.:

E (|ψ〉) =
∑
k

−σk log2(σk).

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 10 / 58

SVD-based approximation

By taking only first k singular values of F one can find rank-k
approximation of matrix F.

F ≈
k∑

i=1

σiU:,i ◦ V†:,i .

The larger k is the approximation is better.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 11 / 58

Using SVD approximation for image compression

Figure: Original image: 1324× 1725 pixels.
Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 12 / 58

Using SVD approximation for image compression

Figure: Rank 1 approximation.
Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 12 / 58

Using SVD approximation for image compression

Figure: Rank 5 approximation.
Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 12 / 58

Using SVD approximation for image compression

Figure: Rank 10 approximation.
Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 12 / 58

Using SVD approximation for image compression

Figure: Rank 50 approximation.
Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 12 / 58

Using SVD approximation for image compression

Figure: Rank 100 approximation.
Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 12 / 58

Using SVD approximation for image compression

Figure: Rank 200 approximation.
Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 12 / 58

SVD-based approximation of gestures
Eigengestures for Natural Human Computer Interface 53

Fig. 1. A sample of the gestures dataset. The data are normalised and centred. Single reali-
sation of Cutting gesture. Upper plot bending of fingers: T —thumb, I—index, M—middle,
R—ring, L— little; lower plot: dashed line—palm roll, dotted line—palm pitch, X Y Z—
palm position in space. (a) original data, (b) approximation reconstructed using only 20 first
principal components.

4 Application of PCA to Data Exploration

One of the typical applications of PCA to the analysis of the data obtained from the
experiment is to reduce their dimensionality. Figure 2 shows mean quality of the
approximation of the original dataset in function of the number of principal com-
ponents used to reconstruct the dataset. The distance in the figure is scaled so that
the approximation using only the first principal component gives 1. It can be easily
seen that the dataset can be efficiently approximated using low rank approximation.

Fig. 2 Relative Euclidean
distance between the dataset
and its approximation ob-
tained using first n principal
components.

A comparison of original data sample vs. its low rank approximation is shown
in Fig. 1b shows original data for Cutting gesture and Fig. 1b shows the same data
reconstructed using only first 20 principal components.

Source: Gawron, Piotr, Przemys law G lomb, Jaros law Adam Miszczak, and Zbigniew Pucha la. 2011. ‘Eigengestures for
Natural Human Computer Interface’. In Man-Machine Interactions 2, edited by Tadeusz Czachórski, Stanis law Kozielski, and
Urszula Stańczyk, 103:49–56. Berlin, Heidelberg: Springer Berlin Heidelberg.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 13 / 58

SVD-based approximation of gestures

Eigengestures for Natural Human Computer Interface 53

Fig. 1. A sample of the gestures dataset. The data are normalised and centred. Single reali-
sation of Cutting gesture. Upper plot bending of fingers: T —thumb, I—index, M—middle,
R—ring, L— little; lower plot: dashed line—palm roll, dotted line—palm pitch, X Y Z—
palm position in space. (a) original data, (b) approximation reconstructed using only 20 first
principal components.

4 Application of PCA to Data Exploration

One of the typical applications of PCA to the analysis of the data obtained from the
experiment is to reduce their dimensionality. Figure 2 shows mean quality of the
approximation of the original dataset in function of the number of principal com-
ponents used to reconstruct the dataset. The distance in the figure is scaled so that
the approximation using only the first principal component gives 1. It can be easily
seen that the dataset can be efficiently approximated using low rank approximation.

Fig. 2 Relative Euclidean
distance between the dataset
and its approximation ob-
tained using first n principal
components.

A comparison of original data sample vs. its low rank approximation is shown
in Fig. 1b shows original data for Cutting gesture and Fig. 1b shows the same data
reconstructed using only first 20 principal components.

Source: Gawron, Piotr, Przemys law G lomb, Jaros law Adam Miszczak, and Zbigniew Pucha la. 2011. ‘Eigengestures for
Natural Human Computer Interface’. In Man-Machine Interactions 2, edited by Tadeusz Czachórski, Stanis law Kozielski, and
Urszula Stańczyk, 103:49–56. Berlin, Heidelberg: Springer Berlin Heidelberg.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 14 / 58

SVD-based approximation of gestures54 P. Gawron et al.

Fig. 3. Visualization of two first eigengestures (principal components). On top: normalized
and centred plots of signals in time. Upper plot bending of fingers: T —thumb, I—index,
M—middle, R—ring, L—little; lower plot: dashed line—palm roll, dotted line—palm pitch,
X Y Z—palm position in space. At the bottom: shapes of hands in selected time moments.
View is from the perspective of a person performing the gesture. For the sake of the clarity of
the picture space position of the palm is omitted.

Source: Gawron, Piotr, Przemys law G lomb, Jaros law Adam Miszczak, and Zbigniew Pucha la. 2011. ‘Eigengestures for
Natural Human Computer Interface’. In Man-Machine Interactions 2, edited by Tadeusz Czachórski, Stanis law Kozielski, and
Urszula Stańczyk, 103:49–56. Berlin, Heidelberg: Springer Berlin Heidelberg.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 15 / 58

SVD-based approximation of gestures

54 P. Gawron et al.

Fig. 3. Visualization of two first eigengestures (principal components). On top: normalized
and centred plots of signals in time. Upper plot bending of fingers: T —thumb, I—index,
M—middle, R—ring, L—little; lower plot: dashed line—palm roll, dotted line—palm pitch,
X Y Z—palm position in space. At the bottom: shapes of hands in selected time moments.
View is from the perspective of a person performing the gesture. For the sake of the clarity of
the picture space position of the palm is omitted.

Source: Gawron, Piotr, Przemys law G lomb, Jaros law Adam Miszczak, and Zbigniew Pucha la. 2011. ‘Eigengestures for
Natural Human Computer Interface’. In Man-Machine Interactions 2, edited by Tadeusz Czachórski, Stanis law Kozielski, and
Urszula Stańczyk, 103:49–56. Berlin, Heidelberg: Springer Berlin Heidelberg.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 16 / 58

SVD-based approximation of 3D meshes
Alexa and Müller / Representing Animations by Principal Components

© The Eurographics Association and Blackwell Publishers 2000.

the bases of a shape, as it exploits similarity and turns it into
zeros, which are easily compressed using entropy encoding.

There are several ways of finding principal components.
In our case, we are not only concerned with finding the
most important principal components to give a rough
approximation of the shapes. In addition, we want to find an
alternative basis and cut only a few non-contributing vec-
tors. A way of finding this basis is the singular value
decomposition (SVD13). The SVD decomposes a real
matrix into an orthogonal, a diagonal, and an orthogonal
one.

Formally, we can write the non-rigid part of the original
key-frames in matrix form:

(5)

Using the SVD, we find the following:

(6)

The values of the diagonal matrix are the singular values.
The closer a singular value is to zero, the closer a base
shape is to being linear-dependent. The first orthogonal
matrix contains the basis of the space with base vectors
corresponding to the singular values, i.e. the rows contain
the we are searching for. The matrix representation and
SVD are visualized in Figure 1.

A severe problem with the SVD is that it is very costly
and likely to reach its limits on modern computers when
applied to matrices with the size of the vertex count of typi-
cal models times the number of key-frames. A solution is to
simplify the base shapes and to not consider every key-
frame. This is rectified by the spatial and temporal coher-
ence typically exhibited in geometric animations. In partic-

ular, it is in many cases sufficient to consider only every
second up to every fifth key-frame. However, adaptive
schemes for the selection of key-frames to consider would
be desirable.

The representation vectors for key-frames which have
not been considered for the SVD can be obtained by pro-
jecting the key-frame into the new basis. Since the basis
constructed with the SVD is orthonormal, computing inner
products of the key-frames and the new base vectors is the
desired projection.

5. Applications and Results

In this section, we present results of computing a PCA for
two animation sequences. We show how the PCA leads to a
compressed progressive representation and fosters the
exchange of geometry or behavior.

The first example is a part of the Chicken Crossing ani-
mation, in particular, 400 frames of the chicken’s geometry.
The sequence is highly non-linear, i.e. it comprises rigid
body motion and dynamic soft body changes. The geometry
consists of 3030 vertices. Disregarding the topology infor-
mation, this results in an uncompressed size of 400 frames x
3030 vertices x 3 dimensions x 4 byte = 14,544,000 bytes.

To generate the principal component representation we
first normalized the frames using the linear least squares fit.
The resulting key-frames were composed into a 9090x400
matrix and a SVD was performed. The resulting orthogonal
matrix was used to define the new base vectors replacing
the key-frames.

We reconstructed the animated sequences using different
numbers of base objects. This was done by setting appropri-
ate singular values to zero. The results are shown in Figure

B T0B0 T1B1 … Tn 1– Bn 1–, , ,()=

B B̂ S VT⋅ ⋅=

S

B̂

B̂i

=
0

0

Figure 2: The Principal Component Analysis for geometric animations illustrated.

original key-frames principal component
bases

importance
factors

animation represen-
tation transform

aiSource: Alexa, Marc, and Wolfgang Müller. 2000. ‘Representing Animations by Principal Components’. Computer
Graphics Forum 19 (3): 411–18.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 17 / 58

Section 3

Tensors

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 18 / 58

Tensors

Let a tensor
T = {ti1,i2,...,iN}I1,I2,...,INi1,i2,...,iN=1 ∈ CI1,I2,...,IN

be given — we say that this tensor has N modes. Each of the indices
corresponds to one of the modes i.e. il to mode l .

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 19 / 58

Tensors

Figure: A 3-mode tensor.

Source: Kolda, T. G., and B. W. Bader. 2009. ‘Tensor Decompositions and Applications’. SIAM Review 51 (3): 455–500.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 20 / 58

Tensor — fibers

Figure: Fibers: Mode-1 (column) fibers) T:,j,k , Mode-2 (row) fibers Ti,:,k , Mode-3
(tube) fibers Ti,j,:.

Source: Kolda, T. G., and B. W. Bader. 2009. ‘Tensor Decompositions and Applications’. SIAM Review 51 (3): 455–500.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 21 / 58

Tensor — slices

Figure: Slices: horizontal Ti,:,:, lateral T:,j,:, frontal T:,:,k .

Source: Kolda, T. G., and B. W. Bader. 2009. ‘Tensor Decompositions and Applications’. SIAM Review 51 (3): 455–500.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 22 / 58

Tensor matrix multiplication

By multiplication of tensor T by matrix U = {uild}
Il ,D
il ,d=1 ∈ CIl ,D in mode l

we define tensor T ′ ∈ CI1,...,Il−1,D,Il+1,...,IN , such that:

T ′ = (T ×l U)i1...il−1d il+1...iN =

Il∑
il=1

ti1i2...il ...iNuild .

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 23 / 58

Tensors unfolding

By unfolding tensor T in mode l we define matrix T(l) such that

(T(l))i ,j = ti1...il−1j il+1...iN ,

where

i = 1 +
N∑

k=1
l 6=l

Jk and Jk =
k−1∏
m=1
m 6=l

Im.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 24 / 58

Tensors unfolding — exmaple

A1,:,: =

0 1 2 3
4 5 6 7
8 9 10 11

A2,:,: =

12 13 14 15
16 17 18 19
20 21 22 23

A(1) =

(
0 4 8 1 5 9 2 6 10 3 7 11

12 16 20 13 17 21 14 18 22 15 19 23

)

A(2) =

0 12 1 13 2 14 3 15
4 16 5 17 6 18 7 19
8 20 9 21 10 22 11 23

A(3) =

0 12 4 16 8 20
1 13 5 17 9 21
2 14 6 18 10 22
3 15 7 19 11 23

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 25 / 58

Sub-tensors

Given tensor T , a new sub-tensor Tin=α can be created:

Til=α = {ti1i2...il−1il+1...in}I1,I2,...,α,...,INi1=1,i2=1,...,il=α,...,in=1 ∈ CI1,I2,...,1,...,IN .

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 26 / 58

Tensor rank

The n-rank of tensor A, denoted by Rn = rankn(A) is the rank of the
matrix A(n).

An N-mode tensor A ∈ CI1,I2,...,IN has rank 1 when it equals to the
outer product of N vectors v(1) ∈ CI1 , v(2) ∈ CI2 , . . . , v(N) ∈ CIN , i.e.

A = v(1) ◦ v(2) ◦ . . . ◦ v(N),

where ◦ is outer product of vectors.

(A)i1,i2,...,iN = (v(1) ◦ v(2) ◦ . . . ◦ v(N))i1,i2,...,iN = v
(1)
i1

v
(2)
i2

. . . v
(N)
iN

,

for 1 ≤ in ≤ IN , 1 ≤ n ≤ N.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 27 / 58

Rank one tensor

Figure: Rank one tensor X = a ◦ b ◦ c

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 28 / 58

Tensor rank, cnt.

The rank of N-mode tensor A, denoted by R = rank(A), is the
minimal number of rank 1 tensors that yield A in a linear
combination.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 29 / 58

Rank one tensor

Figure: Sum of rank one tensors.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 30 / 58

Tensor rank, cnt.

The main difference between matrices and higher-order tensors is the
fact that the rank is not necessarily equal to an n-rank, even when all
the n-ranks are the same.

From the definitions it is clear that always Rn ≤ R.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 31 / 58

Tensor rank — example 1

The tensor

A1,:,: =

(
1 1
0 0

)
A2,:,: =

(
1 0
0 0

)
,

having the following unfoldings:

A(1) =

(
1 0 1 0
1 0 0 0

)
A(2) =

(
1 1 1 0
0 0 0 0

)
A(3) =

(
1 1 0 0
1 0 0 0

)
has R1 = 2,R2 = 1,R3 = 2.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 32 / 58

Tensor rank — example 2

The tensor

A1,:,: =

(
0 1
1 0

)
A2,:,: =

(
1 0
0 0

)
has all n-ranks equal R1 = R2 = R3 = 2.

But rank(A) = 3:

A = x2 ◦ y1 ◦ z1 + x1 ◦ y2 ◦ z1 + x1 ◦ y1 ◦ z2,

x1 = y1 = z1 =

(
1
0

)
x2 = y2 = z2 =

(
0
1

)
.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 33 / 58

Breaking NEWS! AlphaTensor

Source: Cover image — Adam Cain/Domhnall Malone/DeepMind

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 34 / 58

AlphaTensor

48 | Nature | Vol 610 | 6 October 2022

Article

transfer of learned decomposition techniques across various tensors.
To address the challenging nature of the game, AlphaTensor uses a
specialized neural network architecture, exploits symmetries of the
problem and makes use of synthetic training games.

AlphaTensor scales to a substantially larger algorithm space than
what is within reach for either human or combinatorial search. In fact,
AlphaTensor discovers from scratch many provably correct matrix
multiplication algorithms that improve over existing algorithms in
terms of number of scalar multiplications. We also adapt the algo-
rithm discovery procedure to finite fields, and improve over Strassen’s
two-level algorithm for multiplying 4 × 4 matrices for the first time, to
our knowledge, since its inception in 1969. AlphaTensor also discovers a
diverse set of algorithms—up to thousands for each size—showing that
the space of matrix multiplication algorithms is richer than previously
thought. We also exploit the diversity of discovered factorizations to
improve state-of-the-art results for large matrix multiplication sizes.
Through different use-cases, we highlight AlphaTensor’s flexibility
and wide applicability: AlphaTensor discovers efficient algorithms
for structured matrix multiplication improving over known results,
and finds efficient matrix multiplication algorithms tailored to spe-
cific hardware, by optimizing for actual runtime. These algorithms
multiply large matrices faster than human-designed algorithms on
the same hardware.

Algorithms as tensor decomposition
As matrix multiplication (A, B) ↦ AB is bilinear (that is, linear in both
arguments), it can be fully represented by a 3D tensor: see Fig. 1a for
how to represent the 2 × 2 matrix multiplication operation as a 3D ten-
sor of size 4 × 4 × 4, and refs. 3,5,7 for more details. We write nT for the
tensor describing n × n matrix multiplication. The tensor Tn is fixed
(that is, it is independent of the matrices to be multiplied), has entries
in {0, 1}, and is of size n2 × n2 × n2. More generally, we use n m p, ,T to
describe the rectangular matrix multiplication operation of size n × m
with m × p (note that =n n n n, ,T T). By a decomposition of Tn into R
rank-one terms, we mean

T ∑= ⊗ ⊗ , (1)n
r

R
r r r

=1

() () ()u v w

where ⊗ denotes the outer (tensor) product, and u(r), v(r) and w(r) are all
vectors. If a tensor T can be decomposed into R rank-one terms, we say
the rank of T is at most R, or RRank () ≤T . This is a natural extension
from the matrix rank, where a matrix is decomposed into ∑ ⊗r

R r r
=1

() ()u v .

A decomposition of Tn into R rank-one terms provides an algorithm
for multiplying arbitrary n × n matrices using R scalar multiplications
(see Algorithm 1). We refer to Fig. 1b,c for an example algorithm mul-
tiplying 2 × 2 matrices with R = 7 (Strassen’s algorithm).

Crucially, Algorithm 1 can be used to multiply block matrices. By using
this algorithm recursively, one can multiply matrices of arbitrary size, with
the rank R controlling the asymptotic complexity of the algorithm. In par-
ticular, N × N matrices can be multiplied with asymptotic complexity
O N()Rlog ()n ; see ref. 5 for more details.

DRL for algorithm discovery
We cast the problem of finding efficient matrix multiplication algo-
rithms as a reinforcement learning problem, modelling the environ-
ment as a single-player game, TensorGame. The game state after step
t is described by a tensor St, which is initially set to the target tensor
we wish to decompose: S T= n0 . In each step t of the game, the player
selects a triplet (u(t), v(t), w(t)), and the tensor St is updated by subtract-
ing the resulting rank-one tensor: ← − ⊗ ⊗t t

t t t
−1

() () ()S S u v w . The goal
of the player is to reach the zero tensor 0=tS by applying the smallest
number of moves. When the player reaches the zero tensor, the
sequence of selected factors satisfies u v wT = ∑ ⊗ ⊗n t

R t t t
=1

() () () (where
R denotes the number of moves), which guarantees the correctness of
the resulting matrix multiplication algorithm. To avoid playing unnec-
essarily long games, we limit the number of steps to a maximum value,
Rlimit.

For every step taken, we provide a reward of −1 to encourage finding
the shortest path to the zero tensor. If the game terminates with a
non-zero tensor (after Rlimit steps), the agent receives an additional
terminal reward equal to γ− ()R limit

S , where γ()R limit
S is an upper bound

on the rank of the terminal tensor. Although this reward optimizes for
rank (and hence for the complexity of the resulting algorithm), other
reward schemes can be used to optimize other properties, such as
practical runtime (see ‘Algorithm discovery results’). Besides, as our
aim is to find exact matrix multiplication algorithms, we constrain
{u(t), v(t), w(t)} to have entries in a user-specified discrete set of coeffi-
cients F (for example, F = {−2, −1, 0, 1, 2}). Such discretization is com-
mon practice to avoid issues with the finite precision of floating
points15,18,20.

To play TensorGame, we propose AlphaTensor (Fig. 2), an agent based
on AlphaZero1, which achieved tabula rasa superhuman performance
in the classical board games of Go, chess and shogi, and on its extension
to handle large action spaces Sampled AlphaZero21. Similarly to
AlphaZero, AlphaTensor uses a deep neural network to guide a Monte

c1 c2

c3 c4

=
a1 a2

a3 a4

·
b1 b2

b3 b4

a

U =

1 0 1 0 1 0

0 0 0 0 1 1

0 1 0 0 0 0

1 1 0 1 0 –1

V =

1 0

0 0 0

0 1 1

1 0 1

W =

1 0 0 1 1

0 0 1 0 1 0

0 1 0 1 0 0

1 0 0a1 a2 a3 a4

b1

b2

b3

b4

c1

c3

c2

c4

b c

–1

0

1

0

1 0

0 1

0 0

0 –1

–1 0 1

0 1

0 0

1 0

–1 1 0

0

0

0

1

–1

m1 = (a1 + a4)(b1 + b4)

m2 = (a3 + a4) b1

m3 = a1 (b2 – b4)

m4 = a4 (b3 – b1)

m5 = (a1 + a2) b4

m6 = (a3 – a1)(b1 + b2)

m7 = (a2 – a4)(b3 + b4)

c1 = m1 + m4 – m5 + m7

c2 = m3 + m5

c3 = m2 + m4

c4 = m1 – m2 + m3 + m6

Fig. 1 | Matrix multiplication tensor and algorithms. a, Tensor T2 representing
the multiplication of two 2 × 2 matrices. Tensor entries equal to 1 are depicted
in purple, and 0 entries are semi-transparent. The tensor specifies which entries
from the input matrices to read, and where to write the result. For example,
as c1 = a1b1 + a2b3, tensor entries located at (a1, b1, c1) and (a2, b3, c1) are set to 1.

b, Strassen's algorithm2 for multiplying 2 × 2 matrices using 7 multiplications.
c, Strassen's algorithm in tensor factor representation. The stacked factors
U, V and W (green, purple and yellow, respectively) provide a rank-7
decomposition of 2T (equation (1)). The correspondence between arithmetic
operations (b) and factors (c) is shown by using the aforementioned colours.

Source: Fawzi, Alhussein, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin
Barekatain, Alexander Novikov, et al. 2022. ‘Discovering Faster Matrix Multiplication Algorithms with Reinforcement Learning’.
Nature 610 (7930): 47–53.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 35 / 58

AlphaTensor

Nature | Vol 610 | 6 October 2022 | 49

Carlo tree search (MCTS) planning procedure. The network takes as
input a state (that is, a tensor tS to decompose), and outputs a policy
and a value. The policy provides a distribution over potential actions.
As the set of potential actions (u(t), v(t), w(t)) in each step is enormous,
we rely on sampling actions rather than enumerating them21,22. The
value provides an estimate of the distribution z of returns (cumulative
reward) starting from the current state tS . With the above reward
scheme, the distribution z models the agent’s belief about the rank of
the tensor St. To play a game, AlphaTensor starts from the target tensor
(nT) and uses the MCTS planner at each step to choose the next action.
Finished games are used as feedback to the network to improve the
network parameters.

Overcoming the challenges posed by TensorGame—namely, an enor-
mous action space, and game states described by large 3D tensors
representing an abstract mathematical operation—requires multiple
advances. All these components, described briefly below, substantially

improve the overall performance over a plain AlphaZero agent (see
Methods and Supplementary Information for details).

Neural network architecture
We propose a transformer-based23 architecture that incorporates
inductive biases for tensor inputs. We first project the S × S × S input
tensor into three S × S grids of feature vectors by using linear layers
applied to the three cyclic transpositions of the tensor. The main part of
the model comprises a sequence of attention operations, each applied
to a set of features belonging to a pair of grids (Extended Data Figs. 3
and 4). This generalizes axial attention24 to multiple grids, and is both
more efficient and yields better results than naive self-attention. The
proposed architecture, which disregards the order of rows and columns
in the grids, is inspired by the invariance of the tensor rank to slice
reordering. The final feature representation of the three matrices is
passed both to the policy head (an autoregressive model) and the value
head (a multilayer perceptron).

Synthetic demonstrations
Although tensor decomposition is NP-hard, the inverse task of con-
structing the tensor from its rank-one factors is elementary. Hence,
we generate a large dataset of tensor-factorization pairs (synthetic
demonstrations) by first sampling factors u v w{(, ,)}r r r

r
R() () ()

=1 at random,
and then constructing the tensor = ∑ ⊗ ⊗r

R r r r
=1

() () ()D u v w . We train the
network on a mixture of supervised loss (that is, to imitate synthetic
demonstrations) and standard reinforcement learning loss (that is,
learning to decompose a target tensor nT) (Fig. 2). This mixed training
strategy—training on the target tensor and random tensors— substan-
tially outperforms each training strategy separately. This is despite
randomly generated tensors having different properties from the tar-
get tensors.

Change of basis
 nT (Fig. 1a) is the tensor representing the matrix multiplication bilinear
operation in the canonical basis. The same bilinear operation can be
expressed in other bases, resulting in other tensors. These different

Algorithm 1
A meta-algorithm parameterized by =u v w{ , , }r r r() () ()

r
R

1 for computing
the matrix product C = AB. It is noted that R controls the number of
multiplications between input matrix entries.

Parameters: =u v w{ , , }r r r() () ()
r
R

1: length-n2 vectors such that
Tn

r r r() () ()
r
R

1= ∑ ⊗ ⊗= u v w
Input: A, B: matrices of size n × n
Output: C = AB
(1) for r = 1, …, R do
(2) ← + + + +� �m u a u a v b v b() ()r n n1 1

r
n
r r

n
r

1
() ()

1
() ()

2 22 2

(3) for i = 1, …, n2 do
(4) �c w m w mi R1i i

R(1) ()← + +
return C

Change of basis

Pre-generated
synthetic

demonstrations

Played games
buffer

Played
game

Sample
random state

Neural network

Policy head

Value head

Acting

...

LearningUpdated
model

Network inputTraining labels

(u, v, w)

(u(1), v(1), w(1)) (u(2), v(2), w(2)) (u(3), v(3), w(3))

Fig. 2 | Overview of AlphaTensor. The neural network (bottom box) takes
as input a tensor St, and outputs samples (u, v, w) from a distribution
over potential next actions to play, and an estimate of the future returns
(for example, of S−Rank ()t). The network is trained on two data sources:

previously played games and synthetic demonstrations. The updated network
is sent to the actors (top box), where it is used by the MCTS planner to generate
new games.

Source: Fawzi, Alhussein, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin
Barekatain, Alexander Novikov, et al. 2022. ‘Discovering Faster Matrix Multiplication Algorithms with Reinforcement Learning’.
Nature 610 (7930): 47–53.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 36 / 58

AlphaTensor

50 | Nature | Vol 610 | 6 October 2022

Article

tensors are equivalent: they have the same rank, and decompositions
obtained in a custom basis can be mapped to the canonical basis, hence
obtaining a practical algorithm of the form in Algorithm 1. We leverage
this observation by sampling a random change of basis at the beginning
of every game, applying it to Tn, and letting AlphaTensor play the game
in that basis (Fig. 2). This crucial step injects diversity into the games
played by the agent.

Data augmentation
From every played game, we can extract additional tensor-factorization
pairs for training the network. Specifically, as factorizations are
order invariant (owing to summation), we build an additional
tensor-factorization training pair by swapping a random action with
the last action from each finished game.

Algorithm discovery results
Discovery of matrix multiplication algorithms
We train a single AlphaTensor agent to find matrix multiplication algo-
rithms for matrix sizes n × m with m × p, where n, m, p ≤ 5. At the begin-
ning of each game, we sample uniformly a triplet (n, m, p) and train
AlphaTensor to decompose the tensor Tn m p, , . Although we consider
tensors of fixed size (Tn m p, , has size nm × mp × pn), the discovered algo-
rithms can be applied recursively to multiply matrices of arbitrary size.
We use AlphaTensor to find matrix multiplication algorithms over
different arithmetics—namely, modular arithmetic (that is, multiplying
matrices in the quotient ring 2Z), and standard arithmetic (that is, mul-
tiplying matrices in R).

Figure 3 (left) shows the complexity (that is, rank) of the algo-
rithms discovered by AlphaTensor. AlphaTensor re-discovers the
best algorithms known for multiplying matrices (for example,

Strassen’s2 and Laderman’s15 algorithms). More importantly, AlphaT-
ensor improves over the best algorithms known for several matrix
sizes. In particular, AlphaTensor finds an algorithm for multiplying
4 × 4 matrices using 47 multiplications in 2Z , thereby outperforming
Strassen’s two-level algorithm2, which involves 72 = 49 multiplica-
tions. By applying this algorithm recursively, one obtains a practical
matrix multiplication algorithm in Z2 with complexity O N()2.778 .
Moreover, AlphaTensor discovers efficient algorithms for multiply-
ing matrices in standard arithmetic; for example, AlphaTensor finds
a rank-76 decomposition of 4,5,5T , improving over the previous
state-of-the-art complexity of 80 multiplications. See Extended
Data Figs. 1 and 2 for examples.

AlphaTensor generates a large database of matrix multiplication
algorithms—up to thousands of algorithms for each size. We exploit
this rich space of algorithms by combining them recursively, with the
aim of decomposing larger matrix multiplication tensors. We refer
to refs. 25,26 and Appendix H in Supplementary Information for more
details. Using this approach, we improve over the state-of-the-art
results for more than 70 matrix multiplication tensors (with
n, m, p ≤ 12). See Fig. 3 (right) and Extended Data Table 1 for the results.

A crucial aspect of AlphaTensor is its ability to learn to transfer knowl-
edge between targets (despite providing no prior knowledge on their
relationship). By training one agent to decompose various tensors,
AlphaTensor shares learned strategies among these, thereby improv-
ing the overall performance (see Supplementary Information for
analysis). Finally, it is noted that AlphaTensor scales beyond current
computational approaches for decomposing tensors. For example, to
our knowledge, no previous approach was able to handle T4, which has
an action space 1010 times larger than T3. Our agent goes beyond this
limit, discovering decompositions matching or surpassing
state-of-the-art for large tensors such as 5T .

AlphaTensor rank
Modular Standard

Size
(n, m, p)

Best method
known

Best rank
known

(2, 2, 2) (Strassen, 1969)2 7 7 7
(3, 3, 3) (Laderman, 1976)15 23 23 23

49 47 49

98 96 98

(2, 2, 3) 11 11 11
(2, 2, 4) 14 14 14
(2, 2, 5) 18 18 18
(2, 3, 3) 15 15 15
(2, 3, 4) 20 20 20
(2, 3, 5) 25 25 25
(2, 4, 4) 26 26 26
(2, 4, 5) 33 33 33
(2, 5, 5) 40 40 40
(3, 3, 4) (Smirnov, 2013)18 29 29 29
(3, 3, 5) 36 36 36
(3, 4, 4) 38 38 38
(3, 4, 5) 48 47 47
(3, 5, 5) 58 58 58
(4, 4, 5) 64 63 63
(4, 5, 5) 80 76 76 200 400 600 800 1,000

Best rank known

0

5

10

15

20

25

30

Im
p

ro
ve

m
en

t
in

 r
an

k

(9, 9, 9)

(9, 9, 11)

(9, 10, 10)

(9, 11, 11)

(10, 10, 10)

(10, 11, 12)

(10, 12, 12)

(11, 11, 11)

(11, 12, 12)

(Strassen, 1969)2

(Hopcroft and Kerr, 1971)16

(Hopcroft and Kerr, 1971)16

(Hopcroft and Kerr, 1971)16

(Hopcroft and Kerr, 1971)16

(Hopcroft and Kerr, 1971)16

(Smirnov, 2013)18

(Smirnov, 2013)18

(Smirnov, 2013)18

(Sedoglavic and Smirnov, 2021)19

(3, 5, 5) + (2, 5, 5)
(2, 2, 2) ^ (2, 2, 2)

(2, 2, 2) + (2, 2, 1)
(2, 2, 2) + (2, 2, 2)
(2, 2, 2) + (2, 2, 3)

(4, 4, 2) + (4, 4, 3)
(2, 5, 5) ^ (2, 1, 1)

(4, 4, 4)

(5, 5, 5)

(Hopcroft and Kerr, 1971)16

Fig. 3 | Comparison between the complexity of previously known matrix
multiplication algorithms and the ones discovered by AlphaTensor. Left:
column (n, m, p) refers to the problem of multiplying n × m with m × p matrices.
The complexity is measured by the number of scalar multiplications (or
equivalently, the number of terms in the decomposition of the tensor). ‘Best
rank known’ refers to the best known upper bound on the tensor rank (before
this paper), whereas ‘AlphaTensor rank’ reports the rank upper bounds
obtained with our method, in modular arithmetic (Z2) and standard arithmetic.

In all cases, AlphaTensor discovers algorithms that match or improve over
known state of the art (improvements are shown in red). See Extended Data
Figs. 1 and 2 for examples of algorithms found with AlphaTensor. Right: results
(for arithmetic in R) of applying AlphaTensor-discovered algorithms on larger
tensors. Each red dot represents a tensor size, with a subset of them labelled.
See Extended Data Table 1 for the results in table form. State-of-the-art results
are obtained from the list in ref. 64.

Source: Fawzi, Alhussein, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin
Barekatain, Alexander Novikov, et al. 2022. ‘Discovering Faster Matrix Multiplication Algorithms with Reinforcement Learning’.
Nature 610 (7930): 47–53.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 37 / 58

Tensor scalar product

The scalar product 〈A,B〉 of tensors A,B ∈ CI1,I2,...,IN is defined as

〈A,B〉 =

I1∑
i1=1

I2∑
i2=1

. . .

IN∑
iN=1

b∗i1,i2,...,inai1,i2,...,in .

We say that if scalar product of tensors equals 0, then they are orthogonal.
The Frobenius norm of tensor T is given by

||T || =
√
〈T , T 〉.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 38 / 58

Higher Order Singular Value Decomposition (HO-SVD)

Given tensor T , in order to find its HO-SVD, in the form of the so called
Tucker operator JC;U(1), . . . ,U(N)K, such that C ∈ CI1,...,IN and
U(k) ∈ CIk×Ik are unitary matrices following algorithm can be used.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 39 / 58

HO-SVD algorithm

Input: Tensor T
Output: Tucker operator JC;U(1), . . . ,U(N)K
for n ∈ {1, . . . ,N} do

U(n) = left singular vectors of T(n) in unfolding n;

end

C = T ×1 U(1)† ×2 U(2)† . . .×N U(N)†;

return JC;U(1), . . . ,U(N)K;
Algorithm 1: HO-SVD algorithm

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 40 / 58

Tensor C is called the core tensor and has the following useful properties.

Reconstruction:

T = C ×1 U
(1) ×2 U

(2) ×3 . . .×N U(N),

where U(i) are unitary matrices;

Orthogonality:
〈Cil=α, Cil=β〉 = 0

for all possible values of l , α and β, such that α 6= β;

Order of sub-tensor norms:

||Cin=1|| ≥ ||Cin=2|| ≥ . . . ≥ ||Cin=In || ≥ 0

for all n.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 41 / 58

Quantum multi-partite entanglement

Assuming that all σ
(n)
i singular values of unfoldings T(n) are all

distinct, then

C′ = C ×1 Θ(1) ×2 Θ(2) ×3 . . .×N Θ(N),

where Θ(n) = diag(e ıθ
(n)
1 , e ıθ

(n)
2 , . . . e ıθ

(n)
In), then C′ is also core tensor of

T . Therefore HO-SVD decomposition is not unique.

The case where singular values are not distinct is more complicated
and will be omitted here.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 42 / 58

Quantum multi-partite entanglement cnt.

Any multi-partite quantum state |ψ〉 ∈ CI1,I2,...,IN can be expressed as:

|ψ〉 =

I1,I2,...,IN∑
i1=1,i1=2,...,iN=1

ti1,i2,...,iN |i1〉 |i2〉 . . . |iN〉 .

The core tensor associated with group
⊗N

n=1 Θ(n) is the canonical
form of the multipartite pure state and is the entanglement class
under local unitary equivalence.

Given two quantum states, using HOSVD, it is possible to determine
if they are LU equivalent. Details can be found in: Jun-Li Li and
Cong-Feng Qiao. Classification of arbitrary multipartite entangled
states under local unitary equivalence. Journal of Physics A:
Mathematical and Theoretical, 46(7):075301, 2013.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 43 / 58

Approxmiation

Larger values of a core tensor are denoted by low values of indices. This
property is the basis for the development of compression algorithms based
on HO-SVD.
Formally

T̃ = C̃ ×1 Ũ
(1) ×2 Ũ

(2) ×3 . . .×N Ũ(N),

where
C̃ = {ci1,i2,...,in}R1,R2,...,RN

i1,i2,...,in=1 ∈ CR1,R2,...,RN

is a truncated tensor in such a way that in each mode l indices span from
1 to Rl ≤ Il and Ũ(l) ∈ CRl×Il matrices whose columns are orthonormal
and rows form orthonormal basis in respective vector spaces.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 44 / 58

Approxmiation

A visualization of 3-mode truncated tensor.

Figure: Truncated HO-SVD decomposition of tensor T . Its approximation, tensor
T̃ , can be reconstructed from a truncated tucker operator JC̃; Ũ(1), Ũ(2), Ũ(3)K.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 45 / 58

Approxmiation

Given (Rl)
N
l=1 one can form tensor T̃ that approximates tensor T in the

sense of their euclidean distance ||T̃ − T ||. This approximation can be
exploited to form lossy compression algorithms of signals that are indexed
by more than two indices. It should by noted that the choice of (Rl)

N
l=1 in

a given application is non-obvious and depends on the properties of
processed signals.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 46 / 58

Animated 3D mesh compression using HO-SVD

T

J

K − 1

F − 1

vK−1

x

198

3D Mesh M

0

Frame

...

...

...

...

...

...

...

...
v0

vK−1

v0

...
...

y z

x y z

M0

M198

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 47 / 58

Animated 3D mesh compression — algorithm

Input: Data Tensor T , Compression rate CR, Quality metric d
Output: Quality of T ′
/* X is a normalised tensor */

/* R is a sequence of homography matrices */

X , R = Rigid Motion Estimation(T);

/* JC;U(1),U(2),U(3)K is the Tucker operator */

JC;U(1),U(2),U(3)K = HOSVD Decomposition(X);

JC̃; Ũ(1), Ũ(2), Ũ(3)K = Truncate(JC;U(1),U(2),U(3)K,R1,R3)
T̃ = Reconstruct(JC̃; Ũ(1), Ũ(2), Ũ(3)K, R);

return T̃ ;
Algorithm 2: Compression and decompression procedure.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 48 / 58

Animated 3D mesh compression — impact

285Romaszewski M., Gawron P., Opozda S.

2.7 Reconstruction quality estimation

Reconstruction errors were measured by using
two standard metrics:

– Mean Squared Error: MSE(v,v′) = 1
n ∑n

i=1(v′ −
v)2, where v is the original data vector and v′ is
its reconstruction.

– Hausdorff distance:

H(A,B) = max{sup
x∈A

inf
y∈B

e(x,y),sup
y∈A

inf
x∈B

e(x,y)},

where A is the original, B – a reconstructed data
set and e denotes the euclidean distance.

Since these metrics may not correspond well
with human perception of quality for 3D objects,
an additional, perceptual metric called Mesh Struc-
tural Distortion Measure (MSDM) described in [8]
was applied. This metric compares two shapes
based on differences of curvature statistics (mean,
variance, covariance) over their corresponding lo-
cal windows. A global measure between the two
meshes is then defined by the Minkowski sum of
the distances over local windows. Since the metric
compares static meshes, the final result for dynamic
sequence is averaged between animation frames.

2.8 Comparison of HO-SVD and PCA ap-
plication for 3D animation compres-
sion

In order to verify the performance of HO-SVD,
we compared it with a simple method of 3D anima-
tion dimensionality reduction. Following the idea
from [6] we performed experiments using PCA.

Principal Component Analysis [20] may be de-
fined as follows.

Let X = [x1,x2 . . . ,xL] be a data matrix, where
xi ∈ ℜp are data vectors with zero empirical mean.
The associated covariance matrix is given by E =
XXT . By performing eigenvalue decomposition of
E = ODOT such that eigenvalues λi, i = 1, .., p of
D are ordered in a descending order λ1 ≥ λ2 ≥
. . . ≥ λp > 0, one obtains the sequence of princi-
pal components [o1,o2, . . . ,op] which are columns
of O. One can form a feature vector y of dimension
p′ ≤ p by calculating y = [o1,o2, . . . ,op′]

T x.

In order to apply PCA, tensor T = ti, j,k ∈
ℜF×J×K must be unfolded according to Eq. (3).

Therefore mode-1 unfolding is performed so the
data is flattened row by row to form matrix XT ∈
ℜF×JK .

Compression is performed by storing only a
limited number of principal components of E.
When reconstructing matrix X , the dimension of the
desired feature vector p′ equals the number of prin-
cipal components y = [o1,o2, . . . ,op′]

T x used for its
calculation and is the only parameter. The ratio of
reduction depends on number f ′ of the key-frames
left. The compression rate for an animation of a 3D
mesh using PCA can be expressed as

CR(pca) =
(V × J+F)× f ′ ×ds

S

3 Results

Presentation of results is performed by using a
set of well-known 3D animations, summarised in
Table 1. Chicken and Gallop are artificial sequences
of moving animal models. Collapse uses the same
model as Gallop but the applied deformation is an
elastic, non-rigid transformation. Samba, Jumping,
Bouncing are motion capture animations of moving
and dancing humans.

The impact of proportion of mode-1 and mode-
3 components (V T F) on reconstruction quality is
presented in Fig. 4. Panel (a) shows how the re-
construction error drops sharply as the number of
components grows. Panel (b) presents V T F ratio as
the rate of data reduction grows.

Observable deformations for artificial animated
meshes (Chicken, Gallop) are almost unnoticeable
for SS ∼ 90% and only minor distortion is present
for SS ∼ 95%. For motion capture sequences
(Samba, Jumping, Bouncing), major deformations
are present for SS ∼ 95%, and only minor ones for
SS ∼ 85%, with unnoticeable distortions for SS ∼
70%. Reconstruction errors are higher for the Col-
lapse mesh, as its animation is hard to describe us-
ing rigid transformations. Major deformations are
observable for SS ∼ 90%, minor ones are present
up to SS ∼ 70%, and no noticeable distortions for
SS ∼ 50% were present. Frames from reconstructed
animations are presented in Fig. 5 (Chicken), Fig. 6
(Collapse) and 7 (Samba).

A comparison of the reconstruction error occur-
ring when using HO-SVD and PCA is presented

DIMENSIONALITY REDUCTION OF . . .

Table 1. An overview of animations used for visualization of results.

a Chicken animation was published by Jed Lengyel (http://jedwork.com/jed)

b Gallop and Collapse animations, described in [21], were obtained from the website of Doug L. James and
Christopher D. Twigg (http://graphics.cs.cmu.edu/projects/sma).

c Motion capture sequences were obtained from the website of Daniel Vlasic
(http://people.csail.mit.edu/drdaniel/meshanimation).

Name Referenced as Vertices Frames Description
Chicken Crossinga Chicken 3030 400 animation
Horse Gallopb Gallop 8431 48 animation
Horse Collapse Collapse 8431 48 animation
Sambac Samba 9971 174 motion capture sequence
Jumping Jumping 10002 149 motion capture sequence
Bouncing Bouncing 10002 174 motion capture sequence

[a]

100 101 102

v (log)

100

101

102

f
(l

og
)

0.000

0.006

0.012

0.018

0.024

0.030

0.036

0.042

0.048

[b]

10 20 30 40 50 60 70 80 90 100

SS(%)

0.5

1.0

1.5

2.0

2.5

V
T
F

CC

HG

HC

BO

JU

SA

Figure 4. An impact of HO-SVD parameter selection on MSE reconstruction for the Chicken animation.
Panel (a) presents the reconstruction error as a function of the number of mode-1 (v) and mode-3 (f)

components. Note that the distortion drops sharply with only a few first components. Panel (b) presents
Vertices-to-Frame ratio as a function of SS

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 49 / 58

Animated 3D mesh compression — chicken detail

278 Romaszewski M., Gawron P., Opozda S.

Figure 1. A fragment of a reconstructed animation sequence for Chicken animation. Panel (a) presents an
original model, in further panels the data tensor is compressed to (b): 5.1%, (c): 2.1%, and (d): 1.1% of its

original size.

methodology of our experiments are presented in
Section 2. Obtained results can be found in Sec-
tion 3, while their summary along with our com-
ments are presented in Section 4.

1.1 Related work

Due to their amount, data generated by using
3D scanners or animation software require effec-
tive compression methods for their storage, trans-
mission, and processing. Particularly, compression
of dynamic mesh animations is a subject to inten-
sive research. A dimensionality reduction for 3D
animations using PCA was introduced in [6] and re-
fined in [7] where authors performed motion clus-
tering on an animation and applied PCA to its sub-
segments. PCA-based compression is presented in
[9] and [10]. Methods employing mesh connec-
tivity are presented in [3] and [11]. Frame-based
Animated Mesh Compression was also promoted
within the MPEG-4 standard and is described in
[12].

Higher Order Singular Value Decomposition
(HO-SVD) may be treated as a natural extension of
PCA for high-dimensional data. A survey of tensor
properties as well as the description of higher-order
tensor decomposition is provided in [13].

Tensor decomposition was successfully applied
to compression and classification of images [14],
face recognition [15] or watermarking of videos
[16]. In [17] HO-SVD was applied to Level-of-
Detail reduction in animation of human crowds.
In [18] authors presented the decomposition of a
motion tensor and applied it for animation dimen-

sionality reduction, denoising and gap filling. In
[19], an approach based on tensor decomposition
and scalable hierarchical volume representation of
spatial data is used for fast 3D visualization.

1.2 Higher Order Singular Value Decom-
position

Higher Order Singular Value Decomposition,
also called Tucker decomposition, is a generalisa-
tion of SVD from matrices to tensors (N-way ar-
rays). In this section we recall basic facts about
tensors and HO-SVD. We follow conventions pre-
sented in [13].

To describe this decomposition, first we will re-
call basic notions regarding operations on tensors.
Let a tensor

T = {ti1,i2,...,in}I1−1,I2−1,...,IN−1
i1,i2,...,in=0 ∈ ℜI1,I2,...,IN (1)

be given - we say that this tensor has n modes. Each
of the indices corresponds to one of the modes i.e.
il to mode l.

By multiplication of tensor T by matrix U =
{uild}Il−1,D

il ,d=0 ∈ ℜIl ,D in mode l we define tensor T ′ ∈
ℜI1,...,Il−1,D,Il+1,...,IN , such that

T ′ = (T ×l U)i1...il−1d il+1...iN =
Il−1

∑
il=0

ti1i2...il ...iN uild .

(2)

By unfolding tensor T in mode l we define ma-
trix T(l) such that

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 50 / 58

Animated 3D mesh compression — chicken

286DIMENSIONALITY REDUCTION OF . . .

Figure 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%, (c):
SS=97.8%, (d): SS=98.8%.

Figure 6. Visualization of a reconstructed model for Collapse. (a): original, (b): SS=69.9%, (c):
SS=84.9%, (d): SS=97.9%.

Figure 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%, (c): SS=94.9%,
(b): SS=97.9%.

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

Romaszewski M., Gawron P., Opozda S.

in Fig. 8 for Chicken, Gallop, Collapse and Fig. 9
for Samba, Jumping, Bouncing. HO-SVD reduc-
tion gives better result for a majority of anima-
tions. Its advantage is visible especially for motion-
capture sequences. Results for Collapse show that
both methods have problems with describing non-
rigid transformations, and their results are similar
for high values of compression ratio with HO-SVD
introducing lower distortion for low values.

4 Conclusions

Our experiments show that HO-SVD allows
to achieve good reconstruction quality when ap-
plied to reduction of dimensionality of 3D anima-
tions, and usually outperforms the application of
PCA. For most of the animated models and motion-
capture sequences, SS ∼ 90% produces a recon-
struction very similar to the original.

The reconstruction error can be measured by us-
ing objective metrics, which allows reliable control
over compression parameters. Parameters related
to the proportion of preserved components in each
mode, after performing data decomposition, can be
estimated using a simple heuristic approach.

Acknowledgements

This work has been partially supported
by the National Science Centre projects:
M. Romaszewski by NN516405137 (deci-
sion 2011/03/D/ST6/03753), P. Gawron by
NN516481840 (decision 4818/B/T02/2011/40),
and S. Opozda by NN516482340 (decision
4823/B/T02/2011/40).

References
[1] De Lathauwer, L., De Moor, B., Vandewalle, J.: A

multilinear singular value decomposition. SIAM
journal on Matrix Analysis and Applications 21(4)
(2000) 1253–1278

[2] Romaszewski, M., Gawron, P., Opozda, S.: Di-
mensionality reduction of dynamic animations us-
ing ho-svd. In Rutkowski, L., Korytkowski, M.,
Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada,
J., eds.: Artificial Intelligence and Soft Comput-
ing. Volume 8467 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2014)

[3] Ibarria, L., Rossignac, J.: Dynapack: space-
time compression of the 3d animations of triangle
meshes with fixed connectivity. In: Proceedings of
the 2003 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, Eurographics Asso-
ciation (2003) 126–135

[4] Sayood, K.: Introduction to data compression. Ac-
cess Online via Elsevier (2012)

[5] Inoue, K., Urahama, K.: DSVD: a tensor-based
image compression and recognition method. In:
Circuits and Systems, 2005. ISCAS 2005. IEEE In-
ternational Symposium on. (2005) 6308–6311 Vol.
6

[6] Alexa, M., Müller, W.: Representing Animations
by Principal Components. Computer Graphics Fo-
rum 19(3) (2000) 411–418

[7] Sattler, M., Sarlette, R., Klein, R.: Sim-
ple and efficient compression of animation se-
quences. In: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer
animation. SCA ’05, New York, NY, USA, ACM
(2005) 209–217

[8] Lavoué, G., Drelie Gelasca, E., Dupont, F.,
Baskurt, A., Ebrahimi, T.: Perceptually driven 3D
distance metrics with application to watermarking.
In: SPIE Applications of Digital Image Processing
XXIX. (August 2006)

[9] Karni, Z., Gotsman, C.: Compression of soft-body
animation sequences. Computers & Graphics 28(1)
(2004) 25–34

[10] Váša, L., Skala, V.: Cobra: Compression of the
basis for pca represented animations. In: Com-
puter Graphics Forum. Volume 28., Wiley Online
Library (2009) 1529–1540

[11] Váša, L., Skala, V.: Geometry-driven local neigh-
bourhood based predictors for dynamic mesh com-
pression. In: Computer Graphics Forum. Vol-
ume 29., Wiley Online Library (2010) 1921–1933

[12] Mamou, K., Zaharia, T., Preteux, F. In: FAMC:
The MPEG-4 standard for Animated Mesh Com-
pression. IEEE (Oct 2008) 2676–2679

[13] Kolda, T.G., Bader, B.W.: Tensor Decompositions
and Applications. SIAM Review 51(3) (September
2009) 455–500

[14] Shashua, A., Levin, A.: Linear image coding for
regression and classification using the tensor-rank
principle. In: Computer Vision and Pattern Recog-
nition, 2001. CVPR 2001. Proceedings of the 2001
IEEE Computer Society Conference on. Volume 1.,
IEEE (2001) I–42

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 51 / 58

Animated 3D mesh compression — cow

286DIMENSIONALITY REDUCTION OF . . .

Figure 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%, (c):
SS=97.8%, (d): SS=98.8%.

Figure 6. Visualization of a reconstructed model for Collapse. (a): original, (b): SS=69.9%, (c):
SS=84.9%, (d): SS=97.9%.

Figure 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%, (c): SS=94.9%,
(b): SS=97.9%.

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

Romaszewski M., Gawron P., Opozda S.

in Fig. 8 for Chicken, Gallop, Collapse and Fig. 9
for Samba, Jumping, Bouncing. HO-SVD reduc-
tion gives better result for a majority of anima-
tions. Its advantage is visible especially for motion-
capture sequences. Results for Collapse show that
both methods have problems with describing non-
rigid transformations, and their results are similar
for high values of compression ratio with HO-SVD
introducing lower distortion for low values.

4 Conclusions

Our experiments show that HO-SVD allows
to achieve good reconstruction quality when ap-
plied to reduction of dimensionality of 3D anima-
tions, and usually outperforms the application of
PCA. For most of the animated models and motion-
capture sequences, SS ∼ 90% produces a recon-
struction very similar to the original.

The reconstruction error can be measured by us-
ing objective metrics, which allows reliable control
over compression parameters. Parameters related
to the proportion of preserved components in each
mode, after performing data decomposition, can be
estimated using a simple heuristic approach.

Acknowledgements

This work has been partially supported
by the National Science Centre projects:
M. Romaszewski by NN516405137 (deci-
sion 2011/03/D/ST6/03753), P. Gawron by
NN516481840 (decision 4818/B/T02/2011/40),
and S. Opozda by NN516482340 (decision
4823/B/T02/2011/40).

References
[1] De Lathauwer, L., De Moor, B., Vandewalle, J.: A

multilinear singular value decomposition. SIAM
journal on Matrix Analysis and Applications 21(4)
(2000) 1253–1278

[2] Romaszewski, M., Gawron, P., Opozda, S.: Di-
mensionality reduction of dynamic animations us-
ing ho-svd. In Rutkowski, L., Korytkowski, M.,
Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada,
J., eds.: Artificial Intelligence and Soft Comput-
ing. Volume 8467 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2014)

[3] Ibarria, L., Rossignac, J.: Dynapack: space-
time compression of the 3d animations of triangle
meshes with fixed connectivity. In: Proceedings of
the 2003 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, Eurographics Asso-
ciation (2003) 126–135

[4] Sayood, K.: Introduction to data compression. Ac-
cess Online via Elsevier (2012)

[5] Inoue, K., Urahama, K.: DSVD: a tensor-based
image compression and recognition method. In:
Circuits and Systems, 2005. ISCAS 2005. IEEE In-
ternational Symposium on. (2005) 6308–6311 Vol.
6

[6] Alexa, M., Müller, W.: Representing Animations
by Principal Components. Computer Graphics Fo-
rum 19(3) (2000) 411–418

[7] Sattler, M., Sarlette, R., Klein, R.: Sim-
ple and efficient compression of animation se-
quences. In: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer
animation. SCA ’05, New York, NY, USA, ACM
(2005) 209–217

[8] Lavoué, G., Drelie Gelasca, E., Dupont, F.,
Baskurt, A., Ebrahimi, T.: Perceptually driven 3D
distance metrics with application to watermarking.
In: SPIE Applications of Digital Image Processing
XXIX. (August 2006)

[9] Karni, Z., Gotsman, C.: Compression of soft-body
animation sequences. Computers & Graphics 28(1)
(2004) 25–34

[10] Váša, L., Skala, V.: Cobra: Compression of the
basis for pca represented animations. In: Com-
puter Graphics Forum. Volume 28., Wiley Online
Library (2009) 1529–1540

[11] Váša, L., Skala, V.: Geometry-driven local neigh-
bourhood based predictors for dynamic mesh com-
pression. In: Computer Graphics Forum. Vol-
ume 29., Wiley Online Library (2010) 1921–1933

[12] Mamou, K., Zaharia, T., Preteux, F. In: FAMC:
The MPEG-4 standard for Animated Mesh Com-
pression. IEEE (Oct 2008) 2676–2679

[13] Kolda, T.G., Bader, B.W.: Tensor Decompositions
and Applications. SIAM Review 51(3) (September
2009) 455–500

[14] Shashua, A., Levin, A.: Linear image coding for
regression and classification using the tensor-rank
principle. In: Computer Vision and Pattern Recog-
nition, 2001. CVPR 2001. Proceedings of the 2001
IEEE Computer Society Conference on. Volume 1.,
IEEE (2001) I–42

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 52 / 58

Animated 3D mesh compression — dance

286DIMENSIONALITY REDUCTION OF . . .

Figure 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%, (c):
SS=97.8%, (d): SS=98.8%.

Figure 6. Visualization of a reconstructed model for Collapse. (a): original, (b): SS=69.9%, (c):
SS=84.9%, (d): SS=97.9%.

Figure 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%, (c): SS=94.9%,
(b): SS=97.9%.

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

Romaszewski M., Gawron P., Opozda S.

in Fig. 8 for Chicken, Gallop, Collapse and Fig. 9
for Samba, Jumping, Bouncing. HO-SVD reduc-
tion gives better result for a majority of anima-
tions. Its advantage is visible especially for motion-
capture sequences. Results for Collapse show that
both methods have problems with describing non-
rigid transformations, and their results are similar
for high values of compression ratio with HO-SVD
introducing lower distortion for low values.

4 Conclusions

Our experiments show that HO-SVD allows
to achieve good reconstruction quality when ap-
plied to reduction of dimensionality of 3D anima-
tions, and usually outperforms the application of
PCA. For most of the animated models and motion-
capture sequences, SS ∼ 90% produces a recon-
struction very similar to the original.

The reconstruction error can be measured by us-
ing objective metrics, which allows reliable control
over compression parameters. Parameters related
to the proportion of preserved components in each
mode, after performing data decomposition, can be
estimated using a simple heuristic approach.

Acknowledgements

This work has been partially supported
by the National Science Centre projects:
M. Romaszewski by NN516405137 (deci-
sion 2011/03/D/ST6/03753), P. Gawron by
NN516481840 (decision 4818/B/T02/2011/40),
and S. Opozda by NN516482340 (decision
4823/B/T02/2011/40).

References
[1] De Lathauwer, L., De Moor, B., Vandewalle, J.: A

multilinear singular value decomposition. SIAM
journal on Matrix Analysis and Applications 21(4)
(2000) 1253–1278

[2] Romaszewski, M., Gawron, P., Opozda, S.: Di-
mensionality reduction of dynamic animations us-
ing ho-svd. In Rutkowski, L., Korytkowski, M.,
Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada,
J., eds.: Artificial Intelligence and Soft Comput-
ing. Volume 8467 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2014)

[3] Ibarria, L., Rossignac, J.: Dynapack: space-
time compression of the 3d animations of triangle
meshes with fixed connectivity. In: Proceedings of
the 2003 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, Eurographics Asso-
ciation (2003) 126–135

[4] Sayood, K.: Introduction to data compression. Ac-
cess Online via Elsevier (2012)

[5] Inoue, K., Urahama, K.: DSVD: a tensor-based
image compression and recognition method. In:
Circuits and Systems, 2005. ISCAS 2005. IEEE In-
ternational Symposium on. (2005) 6308–6311 Vol.
6

[6] Alexa, M., Müller, W.: Representing Animations
by Principal Components. Computer Graphics Fo-
rum 19(3) (2000) 411–418

[7] Sattler, M., Sarlette, R., Klein, R.: Sim-
ple and efficient compression of animation se-
quences. In: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer
animation. SCA ’05, New York, NY, USA, ACM
(2005) 209–217

[8] Lavoué, G., Drelie Gelasca, E., Dupont, F.,
Baskurt, A., Ebrahimi, T.: Perceptually driven 3D
distance metrics with application to watermarking.
In: SPIE Applications of Digital Image Processing
XXIX. (August 2006)

[9] Karni, Z., Gotsman, C.: Compression of soft-body
animation sequences. Computers & Graphics 28(1)
(2004) 25–34

[10] Váša, L., Skala, V.: Cobra: Compression of the
basis for pca represented animations. In: Com-
puter Graphics Forum. Volume 28., Wiley Online
Library (2009) 1529–1540

[11] Váša, L., Skala, V.: Geometry-driven local neigh-
bourhood based predictors for dynamic mesh com-
pression. In: Computer Graphics Forum. Vol-
ume 29., Wiley Online Library (2010) 1921–1933

[12] Mamou, K., Zaharia, T., Preteux, F. In: FAMC:
The MPEG-4 standard for Animated Mesh Com-
pression. IEEE (Oct 2008) 2676–2679

[13] Kolda, T.G., Bader, B.W.: Tensor Decompositions
and Applications. SIAM Review 51(3) (September
2009) 455–500

[14] Shashua, A., Levin, A.: Linear image coding for
regression and classification using the tensor-rank
principle. In: Computer Vision and Pattern Recog-
nition, 2001. CVPR 2001. Proceedings of the 2001
IEEE Computer Society Conference on. Volume 1.,
IEEE (2001) I–42

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 53 / 58

Original

Compressed 90%

Original

Compressed 99%

References

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle.
A multilinear singular value decomposition.
SIAM journal on Matrix Analysis and Applications, 21(4):1253–1278,
2000.

T. G. Kolda and B. W. Bader.
Tensor Decompositions and Applications.
SIAM Review, 51(3):455–500, September 2009.

Jun-Li Li and Cong-Feng Qiao.
Classification of arbitrary multipartite entangled states under local
unitary equivalence.
Journal of Physics A: Mathematical and Theoretical, 46(7):075301,
2013.

Michal Romaszewski, Piotr Gawron, and Sebastian Opozda.
Dimensionality reduction of dynamic mesh animations using ho-svd.
Journal of Artificial Intelligence and Soft Computing Research, 3,
2013.

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 56 / 58

2-nd edition of comic book on quantum computing

Piotr Gawron (AstroCeNT) Tensor decompositions AGATES 57 / 58

Thank you

	Motivation
	Matrices
	Matrix rank
	Singular Value Decomposition
	Quantum example
	Approxmiation
	Classical example

	Tensors
	Definitions and basic properties
	Tensor ranks
	Higher Order Singular Value Decomposition (HO-SVD)
	Quantum example
	Tensor approximations
	Classical example

