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Abstract. This is an attempt at setting a mathematical framework for the

interdisciplinary discussions taking place during the workshop “Tensors from

the physics point of view” taking place in October 2022 at IMPAN Warsaw in
the framework of the AGATES semester program. The main goal is to make

a kind a “dictionary” between the two communities; and to agree on notation

and terminology. Suggestions, corrections, questions and comments, especially
pedantic ones, are more than welcome.

In this document, vectors in Cd will be denoted by |α⟩. All vector spaces are
equipped with a Hermitian inner product (i.e. it is a finite-dimensional Hilbert
space). This induces a conjugate-linear isomorphism

Cd → (Cd)∗

|α⟩ 7→ ⟨α| .
(0.1)

If you like to think about row and column vectors, the map above sends a column

vector

a1
...
ad

 to the row vector
(
a1 . . . ad

)
.

1. Pure and mixed states

Definition 1.1. We work in a space H = Cd.

• A pure state is a nonzero vector |α⟩ ∈ Cd.
• A state is called normed if ⟨α|α⟩ = 1.

In what follows, we will consider the space of operators End(Cd) ∼= (Cd)∗ ⊗ Cd,
which are just d × d matrices. Elements of this space can be written in the from∑

i ci |α⟩ ⟨β|. Note that we have a natural involution

(Cd)∗ ⊗ Cd (.)H−−−→ (Cd)∗ ⊗ Cd

induced by |α⟩ ⟨β| → |β⟩ ⟨α|. In matrix language, this sends a matrix to its conju-
gate transpose.

Definition 1.2. We still work in a space H = Cd.

• A mixed state or density operator is an element ρ ∈ (Cd)∗ ⊗Cd ∼= End(Cd)
which is Hermitian1, positive-semidefinite, and has trace 1. In other words,
ρ ∈ (Cd)∗ ⊗ Cd is a mixed state if it can be written as

(1.1) ρ =
∑
i

λi |αi⟩ ⟨αi|,
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where ⟨αi|αj⟩ = δij , λi ∈ R≥0, and
∑

λi = 1.
• The rank one projection operator associated to a normed pure state |α⟩ is
the element

|α⟩ ⟨α| = |α⟩ ⊗ ⟨α| ∈ (Cd)∗ ⊗ Cd ∼= End(Cd).

One easily checks that this is indeed a density operator.

Remark 1.3. Two normed pure states |α⟩ , |β⟩ give rise to the same projection
operator if and only if they agree up a phase; i.e. |α⟩ = c |β⟩ where c = eiϕ ∈ C has
norm 1. Points in the projective space P(Cd) correspond to states up to a phase,
and we get an embedding P(Cd) ↪→ (Cd)∗ ⊗Cd ∼= End(Cd) whose image consists of
the rank one density operators.

2. Entanglement for two qudits

Definition 2.1. We work in a space H = Cd1 ⊗ Cd2 .

• A pure state |α⟩ ∈ Cd1 ⊗ Cd2 is called separable if it is of the form |α⟩ =
|α1⟩ ⊗ |α2⟩, where |αi⟩ ∈ Cdi .

• A mixed state

ρ ∈ Cd1 ⊗ Cd2 ⊗ (Cd1)∗ ⊗ (Cd2)∗ ∼= Cd1 ⊗ (Cd1)∗ ⊗ Cd2 ⊗ (Cd2)∗

is called simply seperable if it is of the form ρ1⊗ρ2, where ρi ∈ Cd1⊗(Cd1)∗.
• A mixed state ρ is called seperable if it is a convex combination of simply
seperable states, i.e. it is of the from

(2.1) ρ =

N∑
k=1

pkρ
k,

where ρk = ρk1 ⊗ ρk2 are simply seperable states, pi ∈ R≥0, and
∑

pi = 1.
• A (pure or mixed) state which is not seperable is called entangled.

Remark 2.2. • In (2.1), one can without loss of generality assume that the
ρki are rank one projection operators, i.e. the seperable mixed states are
precisely the ones of the form

(2.2) ρ =

N∑
k=1

pk(|αk
1⟩ ⟨αk

1 |)⊗ (|αk
2⟩ ⟨αk

2 |) =
N∑

k=1

pk |αk
1α

k
2⟩ ⟨αk

1α
k
2 |,

where pi ∈ R≥0, and
∑

pi = 1.
• Our two definitions of “seperable” agree: it’s trivial to check that if a pure
state |α⟩ is seperable, then its projection operator is seperable (even simply
seperable). On the other hand, if we have a seperable mixed state that
comes from a pure state (i.e. it is a rank one operator), then there can
be only one summand in (2.2), hence our state is indeed the projection
operator of a pure seperable state.

3. Partial transpose and the PPT criterion

Coming soon. . .

4. Entanglement for many qudits

Coming soon. . .
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