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Symmetries in Physics

> A symmetry K of a space M — an action of K on M that
preserves some structure on M

P KxM— M,
<I>g:M—>M,
<I>9192(5E) :q>g1(q)gz(w))

» (M,w) — a symplectic manifold.

» w nondegenerate (detw;; # 0) and closed (dw = 0).



Fundamental vector fields

» Symmetry of M: K — compact, connected semisimple Lie
group, Ppw =w forall g € K.

» ¢t — Lie algebra of K.

> For £ € £ the fundamental vector field &:

- d
f(:E) = % tzo(pexptf(x)‘




The momentum map

Léw =0, iédw + diéw =0,
dw(é? ) =0.

> For f there is e : M — R s.t.:

~

dpe () = w(&,-)

» ¢ is a Hamilton function ofé
» Functions j¢ can be chosen s.t.

pe(x) = (u(x)[€),  plx) € ¢,
1(By(2)) = Adypa(a) = gpa(a)g ™.
where (+|-) is a Adg-invariant inner product on €.

» The momentum map: p: M — ¢



QM of qubits
Qubit — 2-level quantum system, C? = Spanc{[0), [1)}

>
> L qubits: H=H1 @ Ho®@...® Hp, where H; ~ C?
» Pure states of L qubits - points in M = P(H)

>

Observables — hermitian operators on H, i.e. X € iu(H)

> %‘;‘;‘;}) — expectation value of the observable X in the state [¢]
OIXS)
010 trp([8]) X, p([9]) = 0.

» p([¢]) — density matrix, in our case p([¢]) = Py



Reduced density matrix

> Assume that only 1-qubit measurements are available

> u(2) & ... P w(2) - 1-qubit observables for L qubits
> X = (XlaXQ,"'vXL)

(61X¢) _ <~ (6l Xk0)
69~ 2= (o) Z“p’“

> pr([9]) € wu(2) and pr([9]) = 0.

> {p1([¢]), p2([9]), - .., pr(¢)} encode information about all
one-qubit measurments



Local measurments and the momentum map

» M = P(H) — Kahler manifold with Fubini-Study wpg
» Natural action of K = SU(2) x ... x SU(2) on M preserves

WFS.

> ¢ =s5u(2)®...dsu(2) - Lie algebra of K
» The momentu map p: P(H) — &

(le)|x) = iP5 gy x e

(9]9)
» 1([¢]) encodes expectation values of all local measurements

ulo)) = i {mm) a6 - S pulo) - ;I}



Entanglement

> ¢ € H is not entangled iff it is a simple tensor

» Entanglement is preserved by Stochastic Local Operations and
Classical Communication (SLOCC)

> G = KC = SL(2,C)*L - invertible SLOOC

(1 ®---®gL)p
(1@ ®gr)d|

g¢: , Ok € SL(27(C>a ¢ € H.

» Two states [¢1] and [¢2] are G-equivalent iff

[g¢1} = [¢2]7 geG

» Cp:=G.¢0 ={g.¢0: g € G} — a class of states with the
entanglement type of [¢]



Problems of SLOCC entanglement clasification

» Number of classes Cy is infinite starting from the system of
four qubits.

» Number of parameters required to distinguish between classes
Cy grows exponentially with the number of qubits.

» These parameters, e.g. G-invariant polynomials typically lack
physical meaning and are not measureable.

> We want to introduce a classification, which is more robust by
organising classes Cy4 into a finite number of families that can
be distinguished using single qubit measurements.
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1-qubit RDMs

» pi([¢]) - the i-th one-qubit Reduced Density Matrix (RDM)

(6) = {a6l) = 3T, pu(o)) - 57

» The ordered spectrum of p;([¢]) — %I is given by

o <Pi([¢]) - ;I) = (=i, M), Ai €0, %]

» The collection of spectra for [¢] € P(H):

1

x L
] W) = e AL

v:PH — [0,2



First Convexity Theorem

» Ay = V(PH) is a convex polytope.

» Follows from the momentum map convexity theorem (Kirwan
'84)

» Higuchi, Sudbery, Szulc '03 - This polytope is given by the
intersection of

1 1
“(zn) <X (z-v)
J#i

with the cube [0, %] <k



Ay for 2 and 3 qubits
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Second Convexity Theorem

>
>
»
| 2
>

>

Cy = [G.9

Ac, = V(Cp) is a convex polytope.

]

Follows from the convexity theorem of Brion '87

Ac, is called an Entanglement Polytope (EP)

¢
Introduced to QI in '12 (AS, Oszmaniec, Ku$) and (Walter,
Doran, Gross, Christandl)

Although for L > 4 the number of classes C is infinite, the
number of polytopes Ac is always finite!

Brion's theorem: Finding EPs requires knowing the generating
set of covariants.

This was solved only up to 4 qubits (Briand, Luque, J.-Y.
Thibon 2003).



Properties of Entanglement Polytopes

> We define equivalence relation: Cy ~ Cy, iff Ac, = Ac,

P> Entanglement polytopes are typically not disjoint,
Ac N Acr # 0.

> Example: Ac.,, = Ay thus Ac, C Acg,y,, for every Cy

» Entanglement polytopes can be regarded as entanglement
witnesses.
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Properties of Entanglement Polytopes

VSEP
VB3
o) = 5 (011) + 101) + [10))
|Pcnz) = % (1000) +[111))
V(N &

U ([pw])

VB2

VeHz VBl

EPs as entanglement witnesses:
» For [¢] € P(H) we give a list of polytopes that do not contain
U([¢])-

» The decision-making power of EPs is determined by the
volume of the region in Ay where many EPs overlap.

» Problem: Decision-making power of EPs for large L.



Critical points
» Finding entanglement polytopes, even for five qubits, is in fact
intractable!
» We want to partially characterise EPs without finding them.

» For a polytope A¢ let Ac be the point that is closest to the
origin 0.
> [Acl® = ming el ¥(4)]

» For any [¢] € P(H) there is a sequence of SLOCC operations
that transforms [¢] into [¢], such that ¥([¢/]) = Ac.

> We define equivalence relation: Cy ~ Cy iff Ac, = Ac,,

» Our aim is to understand the distribution of ||A¢||? in Ay for
large number of qubits.
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Procedure for finding A¢ for L qubits

» '15 TM and A. Sawicki - the procedure for finding Ac using
momentum map results of Kirwan and Ness

1. Construct L-dimensional hypercube whose vertices have
coordinates :l:%.

2. Chose L out of 2% vertices and consider the plane P
containing the chosen points .

3. Find the closest point p to the origin 0 in P.

4. Point p = \¢ for some A¢ iff p does not lie on an edge of the
hypercube.



3 qubits

VSEP
n(ow)
VB
VGHZ Vl;l
|ow) = 25 (1011) + [101) +[110))

[ow) = —= (1011) + [101) + [110)) , |dpcuz) = 7 (1000) +[111))
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Histogram for 7 qubits vs. Gamma (%, 2L)
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Histograms for 20 and 200 qubits, sample of 10% points
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Procedure for finding |[A¢||? for L qubits

» For vectors U1, ...,7;r € R” let
(v1|01)
G(Ela ,Uk) =
(Vg [v1)

» |G(v1,...,Tk)| :=det G(v1,...,Tg)

(01|vk)

(Ui [T)



Example

Vg — V3
W 62
U3
1 ) 32v2
) 1 - 9 1 _ o _
V2 = 2|G(01,2,73)] §* = |G(@1 — 3,7 — V)|
d2 _ ‘G(61>@2aﬁ3)|

|G(v1 — U3, T2 — U3)|



Formula for |[X¢||?

1 (G, )
4 |G(@1 —Vr,...,0[—1 —WL)7

el =

where 7; € R are vectors with £1 entries — Bernoulli vectors



The model

» Vertices of the L-dimensional cube with Bernoulli vertices are
uniformly distributed on S*~! with r? = L.

> Let v = (vy,...,v)t € RL be a Gaussian vector, i.e.
UV ~ N(O, 1).
_en(4?)
(2m)*

» The distribution of v is isotropic. ||v]|? is x with the mean L

and o0 = V2L
» When L — oo the ratio @ — 0

_ ‘G(Ul,...,ﬁL)‘

AR —— for
U1—UL,,UL—1—0L )|

» Problem: Calculate distribution of Tel
Ui~ N(ﬁ, I)



The model




Warm up

|G(v1,...,071)|
‘G(@l, - ,EL_l)‘

» Let v; ~ N(0,I) and consider G := G(v1,...,0L).

> (G is a positive symmetric matrix distributed according to
Wishart distribution W(L, I)

1 1
‘G’7§ef(1/2)trG
2221 (5)
» Cholesky decomposition: G(v1,...,v1) = TT", where T-lower

triangular matrix

» Theorem (Bartlett) T2 are independent random variables

L—i+1 1>

T2~ G
i amma < 5 '



Warm up

> We are interested in 77,

G(v1,...,0L)| |G| 11
T2 — ‘ ? — ~ —
L= Gy, .. op1)| |G Gamma | 3,3

> |G- s the (L, L) minor of G.



Finding the distribution of |[A¢/|?

» Using antisymmetry of the determinant

|G(V1,...,00-1,0L0)| = |G(V1 = VL, ..., V-1 — VL, VL)
» Let G’ :=G(vy —vp,...,0p-1 — UL, 0L)
» Thus
‘G(ﬁl,...,@L)’ _ ’G/’
‘G(ﬁl — ULy, U1 —EL)’ |G/[L,L]‘

» What is the distribution of G’



Finding the distribution of |[A¢/|?

G'=A'GA

> A lower triangular matrix

1 0 0 0
0 1 0 0
A=1|1 0 0
0O 0 ... 1 0
1 -1 ... -1 -1

» Theorem: Assume G ~ W(L, ) then A'/GA ~W(L,Y),
where 3 := A'A

» G’ is distributed according to the Wishart distribution
W(L,Y)



Finding distribution of || A¢||?

> W(L,Y) is a Gramm matrix of vectors w; ~ N (0, )

» Conclusion: For vectors v; ~ N(0, ) and vectors
w; ~ N(0,3) the distribution of

|G(§17"'7§L)’ and |G(@1’7EL)|
|G(vy —vp,..., 01— ) |G(wy,...,wr—1)|
are the same.
> We need to calculate distribution of J&@L@L)l gy
|G(w1,...;,wr—1)]

w; ~ N(O, 2)



Finding distribution of || A¢||?

» Let RR! be the Cholesky decomposition of ¥ = A'A,
» Let T'T" be the Cholesky decomposition of G ~ W(L,I)
> RTT'R' ~ W(L,Y)

‘G(wla"'awL)‘ l

— (RT)}, = B3, T3, = +

2
TLL

|G(@1, L. ,WL_1)|

> 17, ~ Gamma(3,3)

- 1
Xc|? ~ Gamma <2,2L>



Histograms for 20 and 200 qubits, sample of 10% points
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