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Symmetries in Physics

▶ A symmetry K of a space M – an action of K on M that
preserves some structure on M

Φ : K ×M → M,

Φg : M → M,

Φg1g2(x) = Φg1(Φg2(x))

▶ (M,ω) – a symplectic manifold.

▶ ω nondegenerate (detωij ̸= 0) and closed (dω = 0).



Fundamental vector fields
▶ Symmetry of M : K – compact, connected semisimple Lie
group, Φ∗

gω = ω for all g ∈ K.

▶ k – Lie algebra of K.

▶ For ξ ∈ k the fundamental vector field ξ̂:

ξ̂(x) =
d

dt

∣∣∣
t=0

Φexp tξ(x).

M

x

Fexp tx ( )x

x(x)



The momentum map

Lξ̂ω = 0, iξ̂dω + diξ̂ω = 0,

dω(ξ̂, ·) = 0.

▶ For ξ̂ there is µξ : M → R s.t.:

dµξ(·) = ω(ξ̂, ·)

▶ µξ is a Hamilton function of ξ̂
▶ Functions µξ can be chosen s.t.

µξ(x) = (µ(x)|ξ), µ(x) ∈ k,

µ (Φg(x)) = Adgµ(x) = gµ(x)g−1.

where (·|·) is a AdK-invariant inner product on k.

▶ The momentum map: µ : M → k



QM of qubits

▶ Qubit – 2-level quantum system, C2 = SpanC{|0⟩, |1⟩}

▶ L qubits: H = H1 ⊗H2 ⊗ . . .⊗HL, where Hi ≃ C2

▶ Pure states of L qubits - points in M = P(H)

▶ Observables – hermitian operators on H, i.e. X ∈ iu(H)

▶ ⟨ϕ|Xϕ⟩
⟨ϕ|ϕ⟩ – expectation value of the observable X in the state [ϕ]

⟨ϕ|Xϕ⟩
⟨ϕ|ϕ⟩

= trρ([ϕ])X, ρ([ϕ]) ≥ 0.

▶ ρ([ϕ]) – density matrix, in our case ρ([ϕ]) = Pϕ



Reduced density matrix

▶ Assume that only 1-qubit measurements are available

▶ iu(2)⊕ . . .⊕ iu(2) - 1-qubit observables for L qubits

▶ X = (X1, X2, . . . , XL)

⟨ϕ|Xϕ⟩
⟨ϕ|ϕ⟩

=

L∑
k=1

⟨ϕ|Xkϕ⟩
⟨ϕ|ϕ⟩

=

L∑
k=1

trρk([ϕ])Xk

▶ ρk([ϕ]) ∈ iu(2) and ρk([ϕ]) ≥ 0.

▶ {ρ1([ϕ]), ρ2([ϕ]), . . . , ρL(ϕ)} encode information about all
one-qubit measurments



Local measurments and the momentum map

▶ M = P(H) – Kähler manifold with Fubini-Study ωFS

▶ Natural action of K = SU(2)× . . .× SU(2) on M preserves
ωFS .

▶ k = su(2)⊕ . . .⊕ su(2) - Lie algebra of K

▶ The momentu map µ : P(H) → k:

(µ([ϕ])|X) = i
⟨ϕ|Xϕ⟩
⟨ϕ|ϕ⟩

, ϕ ∈ H, X ∈ k

▶ µ([ϕ]) encodes expectation values of all local measurements

µ([ϕ]) = i

{
ρ1([ϕ])−

1

2
I, ρ2([ϕ])−

1

2
I, . . . , ρL(ϕ)−

1

2
I

}



Entanglement

▶ ϕ ∈ H is not entangled iff it is a simple tensor

▶ Entanglement is preserved by Stochastic Local Operations and
Classical Communication (SLOCC)

▶ G = KC = SL(2,C)×L - invertible SLOOC

g.ϕ =
(g1 ⊗ · · · ⊗ gL)ϕ

∥(g1 ⊗ · · · ⊗ gL)ϕ∥
, gk ∈ SL(2,C), ϕ ∈ H.

▶ Two states [ϕ1] and [ϕ2] are G-equivalent iff

[g.ϕ1] = [ϕ2], g ∈ G

▶ Cϕ := G.ϕ = {g.ϕ : g ∈ G} – a class of states with the
entanglement type of [ϕ]



Problems of SLOCC entanglement clasification

▶ Number of classes Cϕ is infinite starting from the system of
four qubits.

▶ Number of parameters required to distinguish between classes
Cϕ grows exponentially with the number of qubits.

▶ These parameters, e.g. G-invariant polynomials typically lack
physical meaning and are not measureable.

▶ We want to introduce a classification, which is more robust by
organising classes Cϕ into a finite number of families that can
be distinguished using single qubit measurements.



1-qubit RDMs

▶ ρi([ϕ]) - the i-th one-qubit Reduced Density Matrix (RDM)

µ([ϕ]) =

{
ρ1([ϕ])−

1

2
I, . . . , ρL([ϕ])−

1

2
I

}

▶ The ordered spectrum of ρi([ϕ])− 1
2I is given by

σ

(
ρi([ϕ])−

1

2
I

)
= (−λi, λi) , λi ∈ [0,

1

2
].

▶ The collection of spectra for [ϕ] ∈ P(H):

Ψ : PH →
[
0,

1

2

]×L
, Ψ([ϕ]) = {λ1, λ2, . . . , λL}.



First Convexity Theorem

▶ ∆H := Ψ(PH) is a convex polytope.

▶ Follows from the momentum map convexity theorem (Kirwan
’84)

▶ Higuchi, Sudbery, Szulc ’03 - This polytope is given by the
intersection of

∀i
(
1

2
− λi

)
≤

∑
j ̸=i

(
1

2
− λj

)
,

with the cube
[
0, 12

]×L
.



∆H for 2 and 3 qubits



Second Convexity Theorem

▶ Cϕ = [G.ϕ]

▶ ∆Cϕ = Ψ(Cϕ) is a convex polytope.

▶ Follows from the convexity theorem of Brion ’87

▶ ∆Cϕ is called an Entanglement Polytope (EP)

▶ Introduced to QI in ’12 (AS, Oszmaniec, Kuś) and (Walter,
Doran, Gross, Christandl)

▶ Although for L ≥ 4 the number of classes C is infinite, the
number of polytopes ∆C is always finite!

▶ Brion’s theorem: Finding EPs requires knowing the generating
set of covariants.

▶ This was solved only up to 4 qubits (Briand, Luque, J.-Y.
Thibon 2003).



Properties of Entanglement Polytopes

▶ We define equivalence relation: Cϕ ∼ Cψ iff ∆Cϕ = ∆Cψ
▶ Entanglement polytopes are typically not disjoint,

∆C ∩∆C′ ̸= ∅.

▶ Example: ∆CGHZ = ∆H thus ∆Cϕ ⊂ ∆CGHZ for every Cϕ

▶ Entanglement polytopes can be regarded as entanglement
witnesses.



Properties of Entanglement Polytopes

EPs as entanglement witnesses:
▶ For [ϕ] ∈ P(H) we give a list of polytopes that do not contain

Ψ([ϕ]).
▶ The decision-making power of EPs is determined by the
volume of the region in ∆H where many EPs overlap.

▶ Problem: Decision-making power of EPs for large L.



Critical points

▶ Finding entanglement polytopes, even for five qubits, is in fact
intractable!

▶ We want to partially characterise EPs without finding them.

▶ For a polytope ∆C let λC be the point that is closest to the
origin 0.

▶ ∥λC∥2 = min[ϕ]∈C∥Ψ(ϕ)∥2

▶ For any [ϕ] ∈ P(H) there is a sequence of SLOCC operations
that transforms [ϕ] into [ϕ′], such that Ψ([ϕ′]) = λC .

▶ We define equivalence relation: Cϕ ∼ Cψ iff λCϕ = λCψ

▶ Our aim is to understand the distribution of ∥λC∥2 in ∆H for
large number of qubits.



Example



Procedure for finding λC for L qubits

▶ ’15 TM and A. Sawicki - the procedure for finding λC using
momentum map results of Kirwan and Ness

1. Construct L-dimensional hypercube whose vertices have
coordinates ±1

2 .

2. Chose L out of 2L vertices and consider the plane P
containing the chosen points .

3. Find the closest point p to the origin 0 in P .

4. Point p = λC for some ∆C iff p does not lie on an edge of the
hypercube.



3 qubits

|ϕW ⟩ = 1√
3
(|011⟩+ |101⟩+ |110⟩) , |ϕGHZ⟩ =

1√
2
(|000⟩+ |111⟩)

|ϕB1⟩ =
1√
2
(|1⟩ ⊗ (|11⟩+ |00⟩))



Histogram for 7 qubits vs. Gamma
(
1
2 , 2L

)



Histograms for 20 and 200 qubits, sample of 106 points
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Γ(α)
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Procedure for finding ∥λC∥2 for L qubits

▶ For vectors v1, . . . , vk ∈ Rn let

G(v1, . . . , vk) =

(v1|v1) . . . (v1|vk)
...

. . . . . .
(vk|v1) . . . (vk|vk)


▶ |G(v1, . . . , vk)| := detG(v1, . . . , vk)



Example

V =
1

3
Sd, d2 =

32V 2

S2

V 2 =
1

3!
|G(v1, v2, v3)| S2 =

1

2!
|G(v1 − v3, v2 − v3)|

d2 =
|G(v1, v2, v3)|

|G(v1 − v3, v2 − v3)|
,



Formula for ∥λC∥2

∥λC∥2 =
1

4

|G(v1, . . . , vL)|
|G(v1 − vL, . . . , vL−1 − vL)

,

where vi ∈ RL are vectors with ±1 entries – Bernoulli vectors



The model

▶ Vertices of the L-dimensional cube with Bernoulli vertices are
uniformly distributed on SL−1 with r2 = L.

▶ Let v = (v1, . . . , vL)
t ∈ RL be a Gaussian vector, i.e.

vi ∼ N(0, 1).

v ∼
exp

(
−1

2∥v∥
2
)√

(2π)L

▶ The distribution of v is isotropic. ∥v∥2 is χ2
L with the mean L

and σ =
√
2L

▶ When L → ∞ the ratio
√
2L
L → 0

▶ Problem: Calculate distribution of |G(v1,...,vL)|
|G(v1−vL,...,vL−1−vL)| for

vi ∼ N(0, I)



The model



Warm up

|G(v1, . . . , vL)|
|G(v1, . . . , vL−1)|

▶ Let vi ∼ N(0, I) and consider G := G(v1, . . . , vL).

▶ G is a positive symmetric matrix distributed according to
Wishart distribution W(L, I)

1

2L2/2ΓL(
L
2 )

|G|−
1
2 e−(1/2)trG

▶ Cholesky decomposition: G(v1, . . . , vL) = TT t, where T -lower
triangular matrix

▶ Theorem (Bartlett) T 2
ii are independent random variables

T 2
ii ∼ Gamma

(
L− i+ 1

2
,
1

2

)



Warm up

▶ We are interested in T 2
LL

T 2
LL =

|G(v1, . . . , vL)|
|G(v1, . . . , vL−1)|

=
|G|

|G[L,L]|
∼ Gamma

(
1

2
,
1

2

)

▶ |G[L,L]| is the (L,L) minor of G.



Finding the distribution of ∥λC∥2

▶ Using antisymmetry of the determinant

|G(v1, . . . , vL−1, vL)| = |G(v1 − vL, . . . , vL−1 − vL, vL)|

▶ Let G′ := G(v1 − vL, . . . , vL−1 − vL, vL)

▶ Thus

|G(v1, . . . , vL)|
|G(v1 − vL, . . . , vL−1 − vL)|

=
|G′|

|G′[L,L]|

▶ What is the distribution of G′



Finding the distribution of ∥λC∥2

G′ = AtGA

▶ A lower triangular matrix

A =


1 0 . . . 0 0
0 1 . . . 0 0
... 0

. . . 0 0
0 0 . . . 1 0
−1 −1 . . . −1 −1


▶ Theorem: Assume G ∼ W(L, I) then AtGA ∼ W(L,Σ),
where Σ := AtA

▶ G′ is distributed according to the Wishart distribution
W(L,Σ)



Finding distribution of ∥λC∥2

▶ W(L,Σ) is a Gramm matrix of vectors wi ∼ N(0,Σ)

▶ Conclusion: For vectors vi ∼ N(0, I) and vectors
wi ∼ N(0,Σ) the distribution of

|G(v1, . . . , vL)|
|G(v1 − vL, . . . , vL−1 − vL)

and
|G(w1, . . . , wL)|
|G(w1, . . . , wL−1)|

are the same.

▶ We need to calculate distribution of |G(w1,...,wL)|
|G(w1,...,wL−1)| for

wi ∼ N(0,Σ)



Finding distribution of ∥λC∥2

▶ Let RRt be the Cholesky decomposition of Σ = AtA,

▶ Let TT t be the Cholesky decomposition of G ∼ W(L, I)

▶ RTT tRt ∼ W(L,Σ)

|G(w1, . . . , wL)|
|G(w1, . . . , wL−1)|

= (RT )2LL = R2
LLT

2
LL =

1

L
T 2
LL

▶ T 2
LL ∼ Gamma(12 ,

1
2)

|λC |2 ∼ Gamma

(
1

2
, 2L

)



Histograms for 20 and 200 qubits, sample of 106 points
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