Hypergraph LSS-ideals and coordinate sections of symmetric tensors

Shekoofeh Gharakhloo

Joint work with Volkmar Welker

November 30, 2022 AGATES, IMPAN, WARSAW

Outline

- Introduction
 - History
- 2 Hypergraph LSS-ideals and coordinate sections of symmetric tensors
 - Algebraic properties of LSS-ideals for hypergraphs
 - Positive matching decomposition for hypergraph
- References

- K field:
- H = ([n], E) cluter hypergraph;
- $d \ge 1$ an integer;
- $S = \mathbb{K}[y_{ik} : i \in [n], k \in [d]];$
- $e \in E$, $f_e^{(d)} = \sum_{k=1}^d \prod_{i \in e} y_{ik}$;

- K field:
- H = ([n], E) cluter hypergraph;
- $d \ge 1$ an integer;
- $S = \mathbb{K}[y_{ik}: i \in [n], k \in [d]];$
- $e \in E$, $f_e^{(d)} = \sum_{k=1}^d \prod_{i \in e} y_{ik}$;
- $L_H^{\mathbb{K}}(d) = (f_e^{(d)}: e \in E) \subseteq S$

- M field:
- H = ([n], E) cluter hypergraph;
- $d \ge 1$ an integer;
- $S = \mathbb{K}[y_{ik}: i \in [n], k \in [d]];$
- $e \in E$, $f_e^{(d)} = \sum_{i=1}^{d} \prod y_{ik}$;
- $L_H^{\mathbb{K}}(d) = (f_e^{(d)}: e \in E) \subseteq S$
- $\mathbb{K} = \mathbb{R}$, H graph $\Longrightarrow V(L_H^{\mathbb{K}}(d)) = OR_{\bar{H}}(\mathbb{R}^d)$

An orthogonal representation of H in \mathbb{R}^d assigns to each $i \in [n]$ a vector $u_i \in \mathbb{R}^d$ such that $u_i^T u_j = 0$, for $\{i, j\} \in \bar{E}$.

An orthogonal representation of H in \mathbb{R}^d assigns to each $i \in [n]$ a vector $u_i \in \mathbb{R}^d$ such that $u_i^T u_i = 0$, for $\{i, j\} \in \bar{E}$.

• 1979 Lovász

An orthogonal representation of H in \mathbb{R}^d assigns to each $i \in [n]$ a vector $u_i \in \mathbb{R}^d$ such that $u_i^T u_i = 0$, for $\{i, j\} \in \bar{E}$.

- 1979 Lovász
- 1984 Grötschel, Lovász and Schrijver

ullet $L_H^{\mathbb{K}}(d)$ Lovász-Saks-Schrijver ideal (LSS-ideal)

ullet $L_H^{\mathbb{K}}(d)$ Lovász-Saks-Schrijver ideal (LSS-ideal)

• 2015 Herzog, Machia, Saeedi Madani and Welker

• 2018 Conca, Welker

Definition (Conca-Welker)

Given a hypergraph H = (V, E), a positive matching of H is a matching M of H such that there exists a weight function $w: V \to \mathbb{R}$ satisfying:

$$\sum_{v \in e} w(v) > 0, \quad \text{if } e \in M,$$
$$\sum_{v \in e} w(v) < 0, \quad \text{if } e \notin M.$$

Definition (Conca-Welker)

Let H = (V, E) be a hypergraph. A positive matching decomposition (or pmd) of H is a partition $E = \bigcup_{i=1}^p E_i$ of E into pairwise disjoint subsets such that E_i is a positive matching of $(V, E \setminus \bigcup_{i=1}^{i-1} E_i)$, for $i=1,\ldots,p$. The E_i s are called the parts of the pmd. The smallest p for which H admits a pmd with p parts will be denoted by pmd(H).

Definition (Conca-Welker)

Let H = (V, E) be a hypergraph. A positive matching decomposition (or pmd) of H is a partition $E = \bigcup_{i=1}^p E_i$ of E into pairwise disjoint subsets such that E_i is a positive matching of $(V, E \setminus \bigcup_{i=1}^{i-1} E_i)$, for $i=1,\ldots,p$. The E_i s are called the parts of the pmd. The smallest p for which H admits a pmd with p parts will be denoted by pmd(H).

The following theorem establishes a nice connection between the pmd of a hypergraph with the algebraic properties of the corresponding LSS-ideal.

Theorem (Conca-Welker)

Let H = (V, E) be a hypergraph. Then for $d \geq \operatorname{pmd}(H)$ the ideal $L_H^{\mathbb{K}}(d)$ is a radical complete intersection. In particular, $L_H^{\mathbb{K}}(d)$ is prime if $d > \operatorname{pmd}(H) + 1$.

riangleleft LSS-ideal $L^{\mathbb{K}}_{\Gamma}(d)$ and determinantal ideal of the (d+1)-minors of a generic symmetric matrix $I_{d+1}^{\mathbb{K}}(Y_{\Gamma}^{\mathrm{Sym}})$:

riangleleft LSS-ideal $L^{\mathbb{K}}_{\Gamma}(d)$ and determinantal ideal of the (d+1)-minors of a generic symmetric matrix $I^{\mathbb{K}}_{d+1}(Y^{\mathrm{Sym}}_{\Gamma})$:

The ideal $I_{d+1}^{\mathbb{K}}(Y_{\Gamma}^{\mathrm{Sym}})$ is radical (resp. is prime, has the expected height) if the ideal $L_{\Gamma}^{\mathbb{K}}(d)$ is radical (resp. is prime, is a complete intersection).

 \triangleleft LSS-ideal $L^{\mathbb{K}}_{\Gamma}(d)$ and determinantal ideal of the (d+1)-minors of a generic symmetric matrix $I_{d+1}^{\mathbb{K}}(Y_{\Gamma}^{\operatorname{Sym}})$:

The ideal $I_{d+1}^{\mathbb{K}}(Y_{\Gamma}^{\text{Sym}})$ is radical (resp. is prime, has the expected height) if the ideal $L_{\Gamma}^{\mathbb{K}}(d)$ is radical (resp. is prime, is a complete intersection).

Therefore the ideal $I_{d+1}^{\mathbb{K}}(Y_{\Gamma}^{\operatorname{Sym}})$ is radical complete intersection for $d > \operatorname{pmd}(\Gamma)$ and is prime for $d > \operatorname{pmd}(\Gamma) + 1$.

Connection of LSS-ideals of k-uniform hypergraphs and coordinate sections of the variety which is the closure of the set of symmetric tensors of bounded rank $(S_{n,k}^d)$:

Let \mathbb{K} be an algebraically closed field. Consider the map

tensors of bounded rank $(S_{n,k}^d)$:

$$\phi: (\mathbb{K}^n)^d \longrightarrow \underbrace{\mathbb{K}^n \otimes \ldots \otimes \mathbb{K}^n}_{k}$$

$$(v_1, \ldots, v_d) \mapsto \sum_{j=1}^d \underbrace{v_j \otimes \cdots \otimes v_j}_{k}$$

$$= \sum_{j=1}^d \sum_{1 \le i_1, \ldots, i_k \le n} (v_j)_{i_1} \cdots (v_j)_{i_k} e_{i_1} \otimes \ldots \otimes e_{i_k} \in \underbrace{\mathbb{K}^n \otimes \ldots \otimes \mathbb{K}^n}_{k}$$

$$\sum_{j=1}^{d} (v_j)_{i_1} \cdots (v_j)_{i_k} = f_{\{i_1 < \dots < i_k\}}^{(d)} (v_1, \dots, v_d).$$

The Zariski closure of the image of ϕ is the variety $S_{n,k}^d$ of symmetric tensors of (symmetric) rank $\leq d$. The coefficient of $e_{i_1} \otimes \cdots \otimes e_{i_k}$ in $\phi(v_1,\ldots,v_d)$ is

$$\sum_{j=1}^{d} (v_j)_{i_1} \cdots (v_j)_{i_k} = f_{\{i_1 < \dots < i_k\}}^{(d)} (v_1, \dots, v_d).$$

Therefore if we restrict the map ϕ to $V(L_H^{\mathbb{K}}(d))$, then we have a parameterization of the coordinate section of $S_{n,k}^d$ with 0 coefficient at $e_{i_1} \otimes \cdots \otimes e_{i_k}$ for $\{i_1,\ldots,i_k\} \in E$.

The Zariski closure of the image of ϕ is the variety $S_{n,k}^d$ of symmetric tensors of (symmetric) rank $\leq d$. The coefficient of $e_{i_1} \otimes \cdots \otimes e_{i_k}$ in $\phi(v_1,\ldots,v_d)$ is

$$\sum_{j=1}^{d} (v_j)_{i_1} \cdots (v_j)_{i_k} = f_{\{i_1 < \dots < i_k\}}^{(d)} (v_1, \dots, v_d).$$

Therefore if we restrict the map ϕ to $V(L_H^{\mathbb{K}}(d))$, then we have a parameterization of the coordinate section of $S_{n,k}^d$ with 0 coefficient at $e_{i_1} \otimes \cdots \otimes e_{i_k}$ for $\{i_1,\ldots,i_k\} \in E$.

Let H=([n],E) be a k-uniform hypergraph and $d\geq 2$. If $L_H^{\mathbb{K}}(d)$ is prime, then $L_H^{\mathbb{K}}(d)$ is a complete intersection.

Let H=([n],E) be a k-uniform hypergraph and $d\geq 2$. If $L_H^{\mathbb{K}}(d)$ is prime, then $L_H^{\mathbb{K}}(d)$ is a complete intersection.

Theorem 2 (Gharakhloo-Welker)

Let H=([n],E) be a k-uniform hypergraph and $d\geq 2$. If $L_H^\mathbb{K}(d-1)$ is a complete intersection, then $L_H^\mathbb{K}(d)$ is prime.

Theorem (Conca-Welker)

Let \mathbb{K} be a field. Then for a hypergraph H = (V, E):

$$\operatorname{pmd}(H) \le d \Rightarrow L_H^{\mathbb{K}}(d)$$
 is a complete intersection. (1)

Theorem (Avramov-Huneke)

Let R be a complete intersection and M be an R-module presented by the matrix $A \in \mathbb{R}^{m \times n}$. Then

- (1) $\operatorname{Sym}_{R}(M)$ is a complete intersection $\Leftrightarrow \operatorname{height}(I_{t}(A)) \geq m t + 1$ for all $t = 1, \ldots, m$.
- (2) $\operatorname{Sym}_R(M)$ is a domain and $I_m(A) \neq 0 \Leftrightarrow R$ is a domain and height $(I_t(A)) \geq m - t + 2$ for all $t = 1, \ldots, m$.

Theorem (Avramov-Huneke)

Let R be a complete intersection and M be an R-module presented by the matrix $A \in R^{m \times n}$. Then

- (1) $\operatorname{Sym}_R(M)$ is a complete intersection $\Leftrightarrow \operatorname{height}(I_t(A)) \geq m t + 1$ for all $t = 1, \ldots, m$.
- (2) $\operatorname{Sym}_R(M)$ is a domain and $I_m(A) \neq 0 \Leftrightarrow R$ is a domain and height $(I_t(A)) \geq m t + 2$ for all $t = 1, \dots, m$.

For a k-uniform hypergraph H=([n],E) and a number $d\geq 1$ we fix

$$S = \mathbb{K}[y_{ij} : i \in [n], j \in [d]], \qquad S' = \mathbb{K}[y_{ij} : i \in [n-1], j \in [d]],$$

$$H' = H \setminus \{n\}, \qquad R = S'/L_{H'}^{\mathbb{K}}(d),$$

$$U = \{\{i_1, \dots, i_{k-1}\} \subseteq [n-1] \mid \{i_1, \dots, i_{k-1}, n\} \in E\}, \qquad u = |U|.$$

Let H=([n],E) be a k-uniform hypergraph. Then $S/L_H^{\mathbb{K}}(d)$ is the symmetric algebra of the cokernel of the linear map $R^u \xrightarrow{A^T} R^d$ defined by the $u \times d$ matrix A where

$$A = \left(y_{i_1 j} y_{i_2 j} \cdots y_{i_{k-1} j} \right)_{\{i_1, \dots, i_{k-1}\} \in U, j \in [d]} \in S'^{u \times d}.$$

Let H=([n],E) be a k-uniform hypergraph. Then $S/L_H^{\mathbb{K}}(d)$ is the symmetric algebra of the cokernel of the linear map $R^u \xrightarrow{A^T} R^d$ defined by the $u \times d$ matrix A where

$$A = \left(y_{i_1 j} y_{i_2 j} \cdots y_{i_{k-1} j} \right)_{\{i_1, \dots, i_{k-1}\} \in U, j \in [d]} \in S'^{u \times d}.$$

Lemma (Gharakhloo-Welker)

Let H=([n],E) be a k-uniform hypergraph. Then for every $2 \le t \le u$ the t-minor f_t of

$$A = (y_{i_1 j} y_{i_2 j} \cdots y_{i_{k-1} j})_{\{i_1, \dots, i_{k-1}\} \in U, j \in [d]} \in S^{u \times d}$$

corresponding to the first t rows and columns is non-zero in $S/L_H^{\mathbb{K}}(d)$.

For integers k, c > 0 such that $0 < k - 1 \le n - c$ let W be a set of (k-1)-subsets of [n-c] with |W|>0.

By $H_{W,c}$ we denote the hypergraph

$$(n, \{\{i_1, \dots, i_k\} \mid \{i_1, \dots, i_{k-1}\} \in W, i_k \in \{n-c+1, \dots, n\}\}).$$

For integers k,c>0 such that $0< k-1 \le n-c$ let W be a set of (k-1)-subsets of [n-c] with |W|>0. By $H_{W,c}$ we denote the hypergraph

$$(n], \{\{i_1, \dots, i_k\} \mid \{i_1, \dots, i_{k-1}\} \in W, i_k \in \{n-c+1, \dots, n\}\}).$$

Proposition (Gharakhloo-Welker)

If $L_H^{\mathbb{K}}(d)$ is prime, then H does not contain $H_{W,c}$ for any set W of (k-1)-subsets of [n-c] with |W|+c>d.

Lemma (Gharakhloo-Welker)

For integers n,u>0 and $k\geq 2$ assume $U=\{A_1,\ldots,A_u\}$ for distinct (k-1)-subsets A_1,\ldots,A_u of [n]. For elements $(y_{ij})_{i\in[n],j\in[d]}$ from the Noetherian ring R and variables $(y_{i\,d+1})_{i\in[n]}$ define $m_{ij}=\prod_{\ell\in A_i}y_{\ell j}$ for $i\in[u]$ and $j\in[d]$. Consider the matrix

$$M = \begin{bmatrix} m_{11} & m_{12} & \cdots & m_{1d} \\ m_{21} & m_{22} & \cdots & m_{2d} \\ \vdots & \vdots & & \vdots \\ m_{u1} & m_{u2} & \cdots & m_{ud} \end{bmatrix}$$

with entries in R and the matrix M^\prime arising from M by adding the new column

$$[m_{1d+1},\cdots,m_{ud+1}]^T$$

with entries in $T = R[Y] = R[y_{1d+1}, \cdots, y_{nd+1}].$

Then for all $1 < t \le u$ we have

height
$$I_t(M') \ge \min\{\text{height } I_{t-1}(M), \text{height } I_t(M) + 1\}.$$
 (2)

Let $k \geq 2$. A k-uniform hypergraph H = (V, E) is called a (k-uniform) tree if

Let $k \geq 2$. A k-uniform hypergraph H = (V, E) is called a (k-uniform) tree if

(T1) For each pair of edges $e, e' \in E$ we have $|e \cap e'| \le 1$.

Let $k \geq 2$. A k-uniform hypergraph H = (V, E) is called a (k-uniform) tree if

- (T1) For each pair of edges $e, e' \in E$ we have $|e \cap e'| \le 1$.
- (T2) For each pair of vertices $v,v'\in V$, for which there is no edge in E containing both, there exists a unique sequence $e_1,\ldots,e_r\in E$ such that:
 - (a) $v \in e_1$ and $v' \in e_r$ and $v, v' \notin e_2, \dots, e_{r-1}$,
 - (b) For each $1 \leq i \leq r-1$, we have $|e_i \cap e_{i+1}| = 1$,
 - (c) For each $1 \le i \ne j \le r$ where $|i j| \ge 2$ we have $e_i \cap e_j = \emptyset$.

Let $k \geq 2$. A k-uniform hypergraph H = (V, E) is called a (k-uniform) tree if

- (T1) For each pair of edges $e, e' \in E$ we have $|e \cap e'| \le 1$.
- (T2) For each pair of vertices $v,v'\in V$, for which there is no edge in E containing both, there exists a unique sequence $e_1,\ldots,e_r\in E$ such that:
 - (a) $v \in e_1$ and $v' \in e_r$ and $v, v' \notin e_2, \dots, e_{r-1}$,
 - (b) For each $1 \leq i \leq r-1$, we have $|e_i \cap e_{i+1}| = 1$,
 - (c) For each $1 \le i \ne j \le r$ where $|i j| \ge 2$ we have $e_i \cap e_j = \emptyset$.

Let H = (V, E) be a k-uniform tree. Then $pmd(H) = \Delta(H)$.

Let H = (V, E) be a k-uniform tree. Then $pmd(H) = \Delta(H)$.

Proof strategy:

 \triangleleft Using induction on $\Delta(H)$.

Let H = (V, E) be a k-uniform tree. Then $pmd(H) = \Delta(H)$.

Proof strategy:

- \triangleleft Using induction on $\Delta(H)$.
- \triangleleft Let $k \geq 2$ and H = (V, E) be a k-uniform hypergraph which is a tree. Then there exists at least one vertex $v \in V$, with $\deg_H(v) = 1$.

Let H = (V, E) be a k-uniform tree. Then $pmd(H) = \Delta(H)$.

Proof strategy:

- \triangleleft Using induction on $\Delta(H)$.
- riangled Let $k \geq 2$ and H = (V, E) be a k-uniform hypergraph which is a tree. Then there exists at least one vertex $v \in V$, with $\deg_H(v) = 1$.

Corollary

Let H=([n],E) be a k-uniform tree. Then the coordinate sections of the variety $S^d_{n,k}$ with respect to H for $\Delta(H)+1\leq d\leq {n+k-1\choose k}-n$, are irreducible.

Proposition (Gharakhloo-Welker)

Let H=(V,E) be the complete 3-uniform hypergraph on n vertices and with $\binom{n}{3}$ edges. Then for every $3 \leq l_1 \leq 2n-3$ and $5 \leq l_2 \leq 2n-1$, the set $E_{l_1,l_2} = \{\{a,b,c\} \in E \mid a < b < c, \quad a+b=l_1,b+c=l_2\}$ is a matching and $E=\bigcup_{l_1,l_2} E_{l_1,l_2}$. In addition, the cardinality of the set

$$E_n := \{(l_1, l_2) \mid \text{ there exist } 1 \le a < b < c \le n, \quad l_1 = a + b, l_2 = b + c\}$$
 is $\frac{3}{2}n^2 - \frac{15}{2}n + 10$.

Conjecture (Gharakhloo-Welker)

Let H=(V,E) be a 3-uniform hypergraph with n vertices. Then $\operatorname{pmd}(H) \leq \frac{3}{2}n^2 - \frac{15}{2}n + 10$.

Conjecture (Gharakhloo-Welker)

Let H=(V,E) be a 3-uniform hypergraph with n vertices. Then $\operatorname{pmd}(H) \leq \frac{3}{2}n^2 - \frac{15}{2}n + 10$.

 \triangleleft If the conjecture holds, then for $3\binom{n}{2}-6n+10 \leq d \leq \binom{n+2}{3}-n+1$ every coordinate section of $S^d_{n,k}$ is irreducible.

- A. Conca and V. Welker, *Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties*, Algebra Number Theory **13**(2) (2019), 455–484.
 - M. Farrokhi D. G., Sh. Gharakhloo, and A. A. Yazdan Pour, *Positive matching decompositions of graphs*, Discrete Applied Mathematics, **320** (2022), 311-323.
- Sh. Gharakhloo, V. Welker, *Hypergraph LSS-ideals and coordinate sections of symmetric tensors*, arXiv:2202.10463.
- J. Herzog, A. Macchia, S. Saeedi Madani, and V. Welker, *On the ideal of orthogonal representations of a graph in* \mathbb{R}^2 , Adv. Appl. Math. **71** (2015), 146–173.

Thanks for your attention

