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Lecture I

1.1. Secant varieties and ranks. We work over an algebraically closed field k of characteristic 0.

Definition 1.1.1. Let X,Y be projective varieties embedded in n-dimensional projective space Pn. The join
variety of X and Y is the Zariski-closure of the union of all lines spanned by a point of X and a point of Y . I.e.,

J(X,Y ) =
⋃

x∈X,y∈Y

⟨x, y⟩ ⊆ Pn.

Definition 1.1.2. Let X be projective variety embedded in n-dimensional projective space Pn. The r-th secant
variety of X is the Zariski-closure of the union of all linear spaces spanned by r points of X. I.e.,

σr(X) =
⋃

p1,...,pr∈X

⟨p1, . . . , pr⟩ ⊆ Pn.

In other words, σ1(X) = X and σr+1(X) = J(X,σr(X)).

Remark 1.1.3. It is called r-th abstract secant variety of X the closure of the of the set of tuples (x1, . . . , xr, p)
where the xi’s are points of X spanning an (r − 1)-dimensional linear space and p of such linear space, i.e.,

sr(X) = {(x1, . . . , xr, p) : p ∈ ⟨x1, . . . , xr⟩ ∼= Pr−1} ⊆ X×r × Pn.

If X is irreducible, then abstract secant varieties are irreducible. Hence, the r-secant variety is irreducible since
it is equal to the closure of image of the abstract r-secant variety via the projection onto the last factor.

If X is reducible, then the r-th secant variety of X is equal to the union of all possible joins of secant varieties
of the irreducible components of X. I.e., if X =

⋃
i=1,...,mXi, then

σr(X) =
⋃

j1+...+jm=r

J(σj1(X1), . . . , σjm(Xm)),

The notion of secant varieties is strictly linked to a notion of rank.

Definition 1.1.4. Let X be a projective variety embedded in Pn. For every p ∈ Pn, the X-rank of p is the
smallest number of points on X whose linear span contains p. I.e.,

rkX(p) = min{r : ∃x1, . . . , xr ∈ X s.t. p ∈ ⟨x1, . . . , xr⟩}.

Therefore, we immediately get that

σr(X) = {p ∈ Pn : rkX(p) ≤ r}.

Under this general framework are collected several notions of ranks that are studied in the literature. Here are
some of them. General references are [Lan12, BCC+18].

Example 1.1.5 (Matrix rank). Let Pmn−1 = P(Matm×n(k)) be the projective space of m × n matrices. For
every matrix M ∈ Matm×n(k) the usual notion of rank corresponds to the X-rank of the point [M ] ∈ Pmn−1

with respect to the variety X of rank-one matrices. Indeed, the matrix M has rank at most r if and only if it
can be written as a sum of r rank-one matrices.

Example 1.1.6 (Tensor rank). As we mentioned in Example 1.1.5, the notion of rank of matrices corresponds
to the notion of rank with respect to the variety of rank-one matrices in the projective space of matrices. This
can be generalized to tensors. Let V1, . . . , Vd be k-vector spaces and consider the tensor product V1 ⊗ . . . ⊗ Vd.
A rank-one tensor, or decomposable tensor, is an element of the form v1 ⊗ . . . ⊗ vd where vi ∈ Vi for
i = 1, . . . , d. The tensor rank of any tensor T ∈ V1⊗ . . .⊗Vd is the minimal number of rank-one tensors needed
to write T as their linear combination. I.e.,

rk(T ) = min

{
r : ∃vij ∈ Vj , λi ∈ k s.t. T =

r∑
i=1

λivi1 ⊗ . . .⊗ vid

}
.

From the algebraic geometry perspective, the space of rank-one tensors is classically called Segre variety. That
is the image of the regular map

ν1 : PV1 × . . .× PVd −→ P(V1 ⊗ . . .⊗ Vd),
([v1], . . . , [vd]) 7→ [v1 ⊗ . . .⊗ vd].

Fixed projective coordinates, that is

((a1,0 : . . . : a1,n1), . . . , (ad,0 : . . . : ad,nd)) 7→ (. . . : a1,i1a2,i2 · · · ad,id : . . .).
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Remark 1.1.7. An expression of a tensor as linear combination of rank-one tensors has been reintroduced
several times in the literature since Hitchcock [Hit27]. For this reason, it can be found with several names like
Canonical Polyadic (CP) [CC70] or Parallel Factor (PARAFAC) [Har70] decomposition. For applications of such
decompositions, we refer to [KB09, Lan12]. In these notes, we simply refer to it as tensor rank decomposition.

Example 1.1.8 (Symmetric tensor rank, a.k.a Waring rank). Let V be a k-vector space and consider the
symmetric power SdV . That is the subspace of symmetric tensors in the tensor product V ⊗d, i.e., tensors that
are invariant under any permutation of the indices. Then, we may restrict to tensor rank decompositions whose
summands are themeselves symmetric. The symmetric tensor rank of a symmetric tensor T ∈ SdV is

rksym(T ) =

{
r : ∃vj ∈ V, λj ∈ k s.t. T =

r∑
i=1

λiv
⊗d
i

}
.

Symmetric tensors can be identified with homogeneous polynomials. Given any rank-one tensor v1 ⊗ . . .⊗ vd ∈
V ⊗d, its symmetrization is

sym(v1 ⊗ . . .⊗ vd) =
1

d!

∑
σ∈Sd

vσ(1) ⊗ . . .⊗ vσ(d) ∈ SdV.

Then, if {x0, . . . , xn} is a basis of V , the identification between the symmetric tensors SdV and degree-d homo-
geneous polynomials in the xi’s is done by extending linearly the following identification: given a multi-index
α = (α0, . . . , αn) ∈ Nn+1 of lenght |α| = α0 + . . .+ αn = d,

xα = xα0
0 · · ·x

αn
n ←→ sym(x0 ⊗ . . .⊗ x0︸ ︷︷ ︸

α0

⊗ . . .⊗ xn ⊗ . . .⊗ xn︸ ︷︷ ︸
αn

).

Under this identification, symmetric rank decompositions for symmetric tensors corresponds to decompositions of
homogeneous polynomials as sums of powers of linear forms, a.k.a. Waring decompositions. Let f ∈ k[x0, . . . , xn]
be a degree-d homogeneous polynomial. The Waring rank of f is the smallest number of d-th powers of linear
forms needed to write f as their linear combination. I.e.,

wrk(f) = min

{
r : ∃λi ∈ k, ℓi ∈ k[x0, . . . , xn], deg(ℓi) = 1 s.t. f =

r∑
i=1

λiℓ
d
i

}
.

We call Waring decomposition an additive decomposition of a degree-d homogeneous polynomial as sums of
d-th powers of linear forms. From the algebraic geometry perspective, the space of rank-one symmetric tensors,
or equivalently of powers of linear forms, is classically called Veronese variety. That is the image of the map

νd : PV −→ PSdV,

([v]) 7→ [v⊗d],

which, considering the monomial basis {
(
d
α

)
xα : α ∈ Nn+1, |α| = d} is given by

(a0 : . . . : an) 7→ (ad0 : ad−1
0 a1 : . . . : ad−i1−...−in

0 ai11 · · · a
in
n : . . . : adn).

Remark 1.1.9. Given a symmetric tensor T ∈ SdV we have introduced two notions of rank. It is natural to ask
what is the relation between them. Since a symmetric tensor rank decomposition is a particular type of tensor
rank decomposition, we obviously have

(1.1) rk(T ) ≤ rksym(T ).

In 2008, Comon asked whether equality always holds or if there are examples of symmetric tensors whose sym-
metric tensor rank is strictly larger than its tensor rank, see [Oed08]. From a geometric perspective, Comon’s
question can be rephrased as whether the following inclusion is always an equality or not,

σr(νd(PV )) ⊆ σr(ν1(PV ×d)) ∩ PSdV.

This question became soon one of the leading problems for the community and it became referred to Comon’s
Conjecture that equality holds. The conjecture was successfully proved in several cases (see [CGLM08, Fri16,
ZHQ16, Sei20]) until 2018 when Shitov provided a counterexample to it, see [Shi18]. Shitov’s remarkable coun-
terexample is a cubic symmetric tensor over the complex numbers in 800 variables whose tensor rank is 903
while its symmetric tensor rank is 904. Other large examples over the real number appeared in [Shi20, WS22]
for quartic and sextic real symmetric tensors.

Example 1.1.10 (Partially-symmetric rank). Between the tensor rank and the symmetric rank there is a spec-
trum of partially-symmetric notions of ranks. Let V1, . . . , Vm be k-vector spaces and let d = (d1, . . . , dm) ∈ Nm.
Let Sd(V1, . . . , Vm) = Sd1V1 ⊗ . . . ⊗ SdmVm be the space of partially-symmetric tensors. Given a tensor
T ∈ Sd(V1, . . . , Vm), we may restrict to tensor rank decompositions whose summands are rank-one partially-
symmetric tensors. I.e.,

rkd(T ) = min

{
r : ∃vij ∈ Vj , λi ∈ k s.t. T =

r∑
i=1

λiv
⊗d1
i1 ⊗ . . .⊗ v⊗dm

im

}
.
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From the geometric point of view, that is the rank with respect to the Segre-Veronese variety given by the
image of the map

νd : PV1 × . . .× PVm −→ PSd(V1, . . . , Vm)

([v1], . . . , [vm]) 7→ [v⊗d1
1 ⊗ . . .⊗ v⊗dm

m ]

namely, νd = ν1 ◦ (νd1 × . . .× νdm).

Remark 1.1.11. We can clearly generalize Comon’s question to the case of partially symmetric tensors. Let
T ∈ Sd(V1, . . . , Vm) be a partially symmetric tensor and let d′ = (d′1,1, . . . , d

′
1,n1

, . . . , d′m,1, . . . , d
′
m,nm

) be a
refinement of d, i.e., for every i ∈ {1, . . . ,m} we have di = d′i,1 + . . .+ d′i,ni

. Then,

(1.2) rkd′
(T ) ≤ rkd(T ).

The failure of Comon’s conjecture opens up the question on the relations within the whole spectrum of partially
symmetric ranks of symmetric tensors, see [GOV19]. Namely, can (1.2) be strict for any d′ refinement of d?

Remark 1.1.12 (Simultaneous rank). The particular case of (1, d)-partially symmetric tensors can be interpreted
also as simultaneous rank. Let F = {f1, . . . , fs} ∈ SdV . The simultanous rank of F is the smallest set of d-th
powers of linear forms that can be used to represent all polynomials of F , i.e.,

wrk(F) = min{r : ∃ℓ1, . . . , ℓr ∈ S1(V ), f ∈ ⟨ℓd1, . . . , ℓdr⟩ ∀f ∈ F}.
Now, let {x1, . . . , xs} be a basis of ks and consider the partially-symmetric tensors T =

∑s
j=1 xj⊗fj ∈ ks⊗SdV .

Then, wrk(F) = rk(1,d)(T ). Assume that wrk(F) = r. Then, there exists {ℓ1, . . . , ℓr} such that fj =
∑r

i=1 λj,iℓ
d
i .

Therefore,

T =
s∑

j=1

xj ⊗

(
r∑

i=1

λj,iℓ
d
i

)
=

r∑
i=1

(
s∑

j=1

λj,iej

)
⊗ ℓdi ,

i.e., rk(1,d)(T ) ≤ r. Viceversa, assume rk(1,d)(T ) = r. I.e.,

T =

s∑
j=1

xj ⊗ fj =

r∑
i=1

ai ⊗ ℓdi .

Consider a basis {ξ1, . . . , ξs} for (ks)∨ dual to the basis {x1, . . . , xs}. Applying on both sides, we obtain Waring

decompositions fj =
∑r

i=1 ξj(ai)ℓ
d
i . Hence, wrk(F) ≤ r. Hence, we conclude that wrk(F) = rk(1,d)(T ).

Note also that, if f ∈ SdV and {x1, . . . , xn} is a basis for V , then we can regard f as a partially-symmetric tensor
by writing

f =
1

d

n∑
i=1

xi ⊗ ∂xif ∈ V ⊗ S
d−1V.

Therefore, from the previous observation, we have that the partially-symmetric rank rk(1,d−1)(f) corresponds to
the simultaneous rank of its partial derivatives, see [GOV19].

Example 1.1.13 (Waring-Chow ranks). Let f ∈ Sd be a degree-d homogeneous polynomial. Let d = (d1, . . . , dm)
be a partition of d, i.e., d1 + . . .+ dm = d. Then, the d-rank, or the Waring-Chow rank, of f is

wrkd(f) = min

{
r : ∃ℓij ∈ S1, λi ∈ k s.t. f =

r∑
i=1

λiℓ
d1
i1 · · · ℓ

dm
im

}
.

Geometrically, the Waring-Chow rank corresponds to the rank with respect to the linear projection of the Segre-
Veronese variety νd(PV )×m into the space of symmetric tensors. See [CCGO17]. The case d = 1 = (1, . . . , 1)
goes usually under the name of Chow rank, see [AB11, TV21]. Another particular case is d = (d− 1, 1) which
goes under the name of tangential rank since it corresponds to the rank with respect to the tangential variety
of the Veronese variety, see [AV18]: indeed, the tangent space at a point [ℓd] ∈ νd(PV ) is given by

T[ℓd]νd(PV ) = {[ℓd−1m] : m ∈ S1}.

Example 1.1.14 (Strength and symmetric slice rank). Let S = k[x0, . . . , xn] =
⊕

d≥0 Sd be the standard graded
polynomial ring where Sd denotes the space of degree-d homogeneous polynomials. Let f ∈ Sd. The strength
of f is the smallest number of reducible forms that are needed to write f as their linear combination. I.e.,

str(f) = min

{
r : ∃λi ∈ k, hi ∈ Sdi , gi ∈ Sd−di s.t. f =

r∑
i=1

λihigi

}
.

The slice rank of f is the smallest number of forms with a linear factor that are needed to write f as their linear
combination. I.e.,

slrk(f) = min

{
r : ∃λi ∈ k, ℓi ∈ S1, gi ∈ Sd−1 s.t. f =

r∑
i=1

λiℓigi

}
.
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From a geometric point of view, the strength corresponds to the rank of the variety Xred of reducible forms in
PSd. Observe that Xred has several components, among them the component of forms having a linear factor X1.
The slice rank corresponds to the rank with respect to X1. See [CGG+19, BBOV21]. The notion of strength has
been introduced in [AH20a] where the authors use it to solve a famous conjecture by Stillman on the existence of
a uniform bound, independent on the number of variables, for the projective dimension of a homogeneous ideal
of a polynomial ring. Since then, there has been a growing literature in the commutative algebra community
exploiting and investigating this notion, see e.g. [AH20b, ESS21, Erm21].

Example 1.1.15 (Waring-type decompositions: sums of powers of higher degree forms). In [FOS12], the authors
considered additive decompositions of forms as sums of powers of higher degree forms. Given f ∈ Sdk, them the
k-th rank of f is

rkk(f) = min

{
r : ∃g1, . . . , gr ∈ Sd s.t. f =

r∑
i=1

λig
k
i

}
.

Partial results for low degrees or low number of variables can be found in [FOS12, LORS19, FODT22].

Example 1.1.16 (Skew-symmetric rank). Let V be a k-vector space and consider the exterior power
∧d V .

Analogously to the symmetric case, if we have a skew-symmetric tensor T ∈
∧d V , we may restrict to tensor

rank decompositions whose summands are themselves skew-symmetric. The skew-symmetric rank of a skew-
symmetric tensor T ∈

∧d V is

rkskew(T ) = min

{
r : ∃vij ∈ V, λi ∈ k s.t. T =

r∑
i=1

λivi1 ∧ . . . ∧ vid

}
.

From the perspective of algebraic geometry, skew-symmetric rank correspond to the rank with respect to Grass-
mannians embedded via Plücker embedding. In particular, if we denote by Gr(d, V ) the space of d-dimensional
linear subspaces of V , then

ι : Gr(d, V ) −→ P
∧d V,

W = span{w1, . . . , wd} 7→ w1 ∧ . . . ∧ wd.

In coordinates, if {e1, . . . , en} is a basis of V , then

ι(W ) =

 ∑
I=(i1,...,id)
i1<...<id

wi1,...,idei1 ∧ . . . ∧ eid

 ∈ P
d∧
V

where wi1,...,id is the determinant of the d× d submatrix obtained selecting the rows {i1, . . . , id} from the n× d
matrix having the vectors wi’s as columns. See [Bor13, ABMM21].

1.2. General rank and maximal rank. By definition, we have a chain of inclusions

(1.3) X = σ1(X) ⊆ σ2(X) ⊆ . . . ⊆ σr(X) ⊆ σr+1(X) ⊆ . . . ⊆ Pn.

Lemma 1.2.1. Let X be projective variety in Pn. If σr(X) = σr+1(X), then σr(X) = ⟨X⟩. In particular,
X = σ2(X) if and only if X is a linear space.

Exercise 1.1. Prove Lemma 1.2.1. Hint:

(1) show that σ2(X) = X if and only if X is a linear space;
(2) show that if σr(X) = σr+1(X) then σr(X) = σr+h(X) for any h > 0.

As immediate consequence of Lemma 1.2.1, we have that if X is non-degenerate, i.e., it is not contained in any
proper linear space, then the chain of inclusions in (1.3) is proper until it fills the ambient space. Therefore, it
makes sense to study what is the rank of a general point.

Definition 1.2.2. Let X ⊆ Pn be a non-degenerate variety. The general X-rank is the rank occurring in a
non-empty Zariski-dense subset of Pn. Namely,

rk◦
X = min {r : σr(X) = Pn} .

It is natural to ask whether the general rank coincides with the maximal rank, denoted by rkmax
X .

By definition, the set of rank-r points is contained in the r-th secant variety, i.e.,

(1.4) {p ∈ Pn : rkX(p) = r} ⊆ σr(X).

In the case of matrices, see Example 1.1.5, by lower semicontinuity of the rank, the inclusion (1.4) is actually an
equality and the maximal rank coincides with the general one. However, in general, this is not the case as we
can see from the following example.
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Example 1.2.3. Let Pd = P(k[x0, x1]3) be the projective space of cubic binary forms. Consider the rational
normal curve C3 given by the image of the Veronese embedding

νd : P1 → Pd, [ℓ] 7→ [ℓd].

Note that

x0x
2
1 = lim

t→0

1

3t

[
x30 − (x0 − tx1)3

]
.

However, it can be proved that xy2 cannot be written as a sum of two cubes, but

(1.5) x0x
2
1 = −1

3
x30 +

2

3
(x0 + x1)3 +

2

3
(x0 − x1)3.

Therefore, [x0x
2
1] ∈ σ2(C3) but wrk(x0x

2
1) = 3.

Exercise 1.2. Show that wrk(x0x
2
1) > 2.

In Remark 2.2.3, we will see that the general binary cubic has rank 2 and therefore Example 1.2.3 provides a
first example in which the maximal rank is strictly larger than the general one.

The failure of semicontinuity of rank makes necessary to introduce a semicontinuos notion of rank.

Definition 1.2.4. Let X be a projective varity embedded in Pn. For every point p ∈ Pn, the border X-rank
of p is the smallest rank r for which there exists a one-parameter family of rank-r points which tends to p, i.e.,

rkX(p) = min
{
r : ∃{qt}t∈(0,1], rkX(qt) = r s.t. lim

t→0
qt = p

}
.

Equivalently, the smallest r for which the point p belongs to the r-th secant variety of X, i.e.,

rkX(p) = min {r : p ∈ σr(X)} .

Clearly, by definition, the general rank and the general border rank coincide.

Remark 1.2.5. The search for examples of points having rank strictly higher than the general one is extremely
difficult and they are known in very few cases. Even if largely expected, we lack of a general proof that the
maximal rank is strictly larger than the general one in the case of tensor ranks or its symmetric, partially-
symmetric and skew-symmetric analogues. See [BHMT18, BBV22] for general study of high rank loci. See
[Seg42, Kle99, Jel14, DP15, BT16] for other computations of maximal ranks, especially in the case of Veronese
varieties.

Remark 1.2.6. A very particular case is the one of strength of polynomials, see Example 1.1.14. Indeed, it is
easy to see that in the case of slice rank, i.e., secant varieties of the variety of homogeneous polynomials, the (1.3)
is an equality. It is easy to observe that a form f ∈ k[x0, . . . , xn] admits a slice decomposition of length r if and
only if the hypersurface {f = 0} contains a linear subspace of codimension r. Hence, in the projective space PSd

of degree-d homogeneous polynomials, the set of forms having slice rank at most r is the image of the projection
onto the first factor of an incidence variety inside PSd × Gr(n − r, n), where Gr(k, n) is the Grassmannian of
k-dimensional linear spaces in Pn; see [Har, Example 12.5]. Thus, it is Zariski-closed. As a consequence, the
general slice rank is equal to the maximal slice rank in Sd. Moreover, from the latter classical construction, it
is possible to deduce the value of the maximal slice rank for forms of fixed degree and number of variables, see
[Har, Example 12.5]. In [BBOV22], it was proved that the same does not hold for the set of forms of bounded
strength. Nevertheless, the general strength in Sd coincides with the maximal strength (and to the maximal slice
rank): indeed, it was shown that the largest irreducible component of σr(Xred) is σr(X1).

We conclude with a general upper bound on the maximal rank which is at most twice the general rank. This
is far from being optimal (in the few cases a better bound has been proved), but it holds with respect to any
algebraic variety. We recall the proof since it is beautifully simple.

Theorem 1.2.7. [BT15, Theorem 1] Let X ⊆ Pn be a non-degenerate variety. Then,

rkmax
X ≤ 2rk◦

X .

Proof. Let U ⊆ Pn the Zariski-dense set of points having general X-rank, i.e., for every p ∈ U , rkX(p) = rk◦
X .

Then, for any other point q ∈ Pn, the line ⟨p, q⟩ through the two points contains infinitely many points of U . In
particular, q is the linear combination of two points of U . By subadditivity of the rank, rkX(q) ≤ 2rk◦

X . □
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Lecture II

We first focus on the following question.

Given X ⊆ Pn non-degenerate. What is the general X-rank?

As we have seen in the last lecture, this is equivalent to ask which is the smallest r such that σr(X) = Pn.

2.1. Expected dimension. As we observed in Remark 1.1.3 when we recalled the definition of abstract secant
variety natural parametrization of the s-th secant variety of X ⊆ Pn is

(2.6)
X×s × Ps−1 −→ Pn,

(p1, . . . , ps, (a1 : . . . : as)) 7→ a1p1 + . . .+ asps.

Hence, we can immediately deduce that

dimσs(X) ≤ sdim(X) + s− 1,

where the right hand-side is equal to the dimension of the abstract secant variety of X. We might expect that such
parametrization is optimal, namely that, as long as it is numerically possible, the projection from the abstract
secant variety onto to secant variety has finite-dimensional fibers. I.e., the expected dimension of σs(X) is

exp . dimσs(X) = min{n, s dim(X) + s− 1}.

Hence, we might say that expected answer to our question, namely the the expeceted general X-rank is

exp .rk◦
X =

⌈
n+ 1

dim(X) + 1

⌉
.

However, the dimension is not always as expected as we can easily see from the following easy example.

Example 2.1.1. Consider the Segre variety X = ν1,1(P2×P2) ⊆ P8 that is the variety of rank-1 matrices in the
space of 3 × 3 matrices. Now, since X is is 4-dimensional, we expect that σ2(X) = P8 fills the ambient space.
However, it is immediate to see that it is not the case: indeed, as mentioned in Example 1.1.5, σ2(X) is the space
of rank-2 matrices which is a hypersurface defined by the vanishing of the determinant.

Therefore, it makes sense to give the following definition.

Definition 2.1.2. Let X ⊆ Pn be a non-degenerate projective variety. We say that it is s-defective if the
dimension of the s-th secant variety is not the expected one, i.e., dimσs(X) < exp .dimσs(X). In that case, we
call the difference δs(X) = exp . dimσs(X)− dimσs(X) the geometric defect.

We say that X is defective if it is s-defective for some s.

The classification of defective varieties is a challenging problem that goes back to the classical algebraic geometry
of late XIX century and beginning of XX century. It is a classical result by Palatini [Pal09] that if a secant variety
is not a hypersurface then it is of at least codimension two in the following one: this has immediate corollary that
there are no defective curves, see Section 2.2. The classification of surfaces was due to Severi [Sev01] who proved
that the only defective surfaces are the Veronese surface of P5 (namely, the space of rank-two ternary quadrics)
and cones, see Section 2.3. The classification of defective threefolds is due to Scorza [Sco08]. The case of fourfolds
was treated again by Scorza in [Sco09, Sco60] and completed recently in the recent pre-print [CCR20].

Other results have been given for particular families of algebraic varieties. The most celebrated result is the
complete classification in the case of Veronese varieties where Alexander and Hirschowitz proved in 1995 [AH95]
that all the examples of defective cases that were classically known since the beginning of XX century were,
indeed, the only ones. Other partial classifications in the cases of Segre and Segre-Veronese varieties has been
proved. We will come back on this in Lecture III and Lecture IV .

2.2. Secant varieties of curves. We recall here the case of curves which will be an immediate corollary of the
following result due to Palatini.

Theorem 2.2.1 ([Pal09]). Let X ⊆ Pn be a non-degenerate irreducible variety and assume that dimσs+1(X) =
dimσs(X) + 1. Then, σs(X) is a hypersurface and σs+1(X) = Pn.

Proof. Let p ∈ X be a general point and q ∈ σs+1(X) be a smooth point. Hence,

σs(X) ⊊ J(p, σs(X)) ⊆ σs+1(X).

By assumption and irreducibility of σs+1(X), J(p, σs(X)) = σs+1(X) and consequently q ∈ ⟨p, z⟩ for some z ∈
σs(X). Being a cone, we also get that p ∈ Tqσs+1(X). By generality of p ∈ X, we conclude that ⟨X⟩ ⊆ Tqσs+1(X)
and then, since the opposite inclusion is trivial, σs+1(X) = Pn. Consequently, σs(X) is a hypersurface. □
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In other words, if X is non-degenerate and σs(X) is not a hypersurface, then σs(X) has codimension at least two
in σs+1(X). We are now ready to compute the dimension of all secant varieties of non-degenerate curves.

Corollary 2.2.2. Let X ⊆ Pn be a non-degenerate curve. Then, dimσs(X) = min{2s− 1, n}.

Proof. From the parametrization (2.6), we have seen that

dimσs(X) ≤ sdim(X) + s− 1 = 2s− 1.

By Theorem 2.2.1,

dimσs(X) ≥ dimσs−1(X) + 2

unless σs−1(X) is an hypersurface. By induction on s, we deduce that dimσs(X) ≥ 2(s − 1) − 1 + 2 = 2s − 1
as claimed. Finally, if σs−1(X) is an hypersurface then 2(s − 1) − 1 = n − 1, i.e., 2s − 1 = n + 1, and indeed
dimσs(X) = n as claimed. □

Remark 2.2.3. From Corollary 2.2.2, the general rank with respect to any non-degenerate curve C ⊆ Pn is

rk◦
C =

⌈
n+ 1

2

⌉
.

In particular, since, the Waring rank of binary degree-d forms corresponds to the rank with respect to the
Veronese embedding of P1, i.e., with respect to a degree-d Rational Normal Curve in Pd, see Example 1.1.8, then
we deduce that the general Waring rank of degree-d binary homogeneous polynomials is

wrk◦(d, 2) =

⌈
d+ 1

2

⌉
.

This can be regarded as a geometric proof of a result due to Sylvester about decompositions of binary forms as
sums of powers of linear forms [Syl51]. We will come back on Sylvester’s approach in Lecture IV.

2.3. First Terracini’s Lemma. We explain here a general geometric approach to the study of general ranks
with respect to any algebraic variety. A natural approach to the computation of dimensions of algebraic varieties
is through general tangent spaces. A classical result by Terracini gives us the following very useful description of
the general tangent space of a secant variety.

Lemma 2.3.1 (First Terracini’s Lemma, [Ter11]). Let X ⊆ Pn. Let p1, . . . , pr be general points on X and q be
a general point on their linear span ⟨p1, . . . , pr⟩. Then,

Tqσr(X) = ⟨Tp1(X), . . . , Tpr (X)⟩.

Proof. Let dim(X) = d. Consider X(t) = X(t1, . . . , td) ∈ Pn be a local parametrization of X and, for j =
1, . . . , d, denote by Xj(t) the j-th partial derivative of such parametrization. Assume that, for any i = 1, . . . , r,
pi = X(ti) for some ti = (ti1, . . . , t

i
d). Then, the linear space ⟨Tp1(X), . . . , Tpr (X)⟩ is spanned by the rows of the

r(d+ 1)× (n+ 1) matrix whose rows are

(2.7)



X(t1)
X1(t1)

...
Xd(t1)

...
X(tr)
X1(tr)

...
Xd(tr)


.

Similarly, we can write a local parametrization of σr(X) as

s(t11, . . . , t
1
d, . . . , t

r
1, . . . , t

r
d, λ1, . . . , λr−1) =

r−1∑
i=1

λiX(ti) +X(tr).
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The tangent space is spanned by the rows of the r(d+ 1)× (n+ 1) matrix whose rows are

(2.8)



∑r−1
i=1 λiX(ti) +X(tr)

λ1X1(t1)
...

λ1Xd(t1)
...

λr−1X1(tr−1)
...

λr−1Xd(tr−1)
X1(tr)

...
Xd(tr)
X(t1)

...
X(tr−1)


Clearly, the two matrices (2.7) and (2.8) are related one to the other by simple rows combination and the claim
follows. □

Recalling the Grassmann formula on dimensions of span of linear spaces, Terracini’s Lemma is telling us that a
variety X is r-defective if and only if the tangent spaces at r general points of X have unexpected intersections.
Even this reduces the problem of computing dimensions of secant varieties to a linear algebra problem, the latter
quickly becomes infeasible to be computationally approached when the dimensions increase. Therefore, in order
to be effectively use Terracini’s Lemma, it is necessary to have a good description and interpretation of the
tangent spaces of X. In Lecture III, we will see this in the case of Veronese varieties, where the problem of
studying intersection of tangent spaces can be translated into an interpolation problem.

For now, let us see some example of defective variety directly in terms of Terracini’s Lemma. Observe that,
by Theorem 2.2.1, there are no defective surfaces in Pn for n ≤ 4. In P5, the Veronese surface ν2(P2) is
defective.

Example 2.3.2 (Defective Veronese surface). Let X = ν2(P2) ⊆ P5 be the image of the 2-nd Veronese embedding
of P2. Being a surface, the expected dimension of its 2-nd secant variety is

exp . dimσ2(X) = min{5, 2 · 2 + 1} = 5.

In other words, we expect that σ2(X) fills the ambient space. Recall that the Veronese embedding can be regarded
as the space of pure powers in the space of homogeneous polynomials, see Example 1.1.8. In this particular case,
if S = k[x0, x1, x2] =

⊕
d≥0 Sd is the standard graded ring of ternary forms, then

X = {[ℓ2] : ℓ ∈ S1} ⊆ PS2.

The tangent space to a point [ℓ2] ∈ X is easily computed. Since, for every ℓ,m ∈ S1,

d

dt
(ℓ+ tm)2|t=0 = 2ℓm,

then, we have that

T[ℓ2]X = {[ℓm] : m ∈ S1} .
By Terracini’s Lemma, if [ℓ21], [ℓ22] ∈ X are general and p ∈ ⟨[ℓ21], [ℓ22]⟩ is general, then

Tpσ2(X) = ⟨T[ℓ21]
X,T[ℓ22]

X⟩.

By Grassmann formula,

dimTpσ2(X) = dimT[ℓ21]
X + dimT[ℓ22]

X − dim
(
T[ℓ21]

X ∩ T[ℓ22]
X
)
.

Now, it is immediate to see that T[ℓ21]
X∩T[ℓ22]

X is not empty, as expected, but T[ℓ21]
X∩T[ℓ22]

X = [ℓ1ℓ2]. Therefore,

dimTpσ2(X) = 2 + 2 + 0 = 4 < 5.

Example 2.3.3. Another easy example of defective varieties is given by cones. Indeed, every pair of tangent
spaces meets at the vertex of the cone and, therefore, their span has dimension lower than the expected.

As mentioned above, an important result by Severi showed that the latter two examples are the only defective
cases for surfaces [Sev01]. See e.g. [Chi04] for a complete exposition.
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Theorem 2.3.4 (Severi’s Theorem, [Sev01]). Let X ⊆ Pn be a 2-defective surface. Then, n ≥ 5 and X is either
projectively equivalent to a cone or to the Veronese surface ν2(P2).

It is immediate to see that, with a similar idea as in Example 2.3.2, it is possible to show that indeed all degree-2
Veronese embedding are defective. We will see this in Example 3.2.1 by following a different approach.

Exercise 2.3. Let X = ν1(Pm × Pn) be the Segre variety of rank-one matrices. Compute the dimension of the
s-th secant variety σs(X). For which s it is defective?

2.4. Contact loci and second Terracini’s Lemma. We recall subvarieties useful to understand defective
varieties. For a complete presentation, we refer to [Chi04].

Definition 2.4.1. For general points {p1, . . . , pr} ⊂ X and a general hyperplane H ⊃ ⟨Tp1(X), . . . , Tpr (X)⟩, we
call contact locus Σ(H) = Σp1,...,pr (H) the union of all the components of the set {q ∈ Xsmooth : Tq(X) ⊂ H}
containing one of the pi’s. If Σ(H) is positive dimensional, then we say that X is weakly defective.

Lemma 2.4.2 (Terracini’s Second Lemma, see [BO08, Lemma 2.3]). Let X ⊂ Pn be a r-defective variety. Let
{p1, . . . , pr} be a set of general points. A general hyperplane H ⊂ Pn which contains ⟨Tp1(X), . . . , Tpr (X)⟩ is
indeed tangent to X along a positive-dimensional variety C passing through the pi’s.

Proof. Let q ∈ ⟨p1, . . . , pr⟩ be a general point. We consider the projection of the abstract r-secant variety in
X×r × Pn (see Remark 1.1.3) onto the r-secant variety. Along this projection, q admits a positive dimensional
fiber π−1(q) since, by assumption, X is r-defective. Note that for any (x1, . . . , xr) ∈ π−1(q) we have that
q ∈ ⟨x1, . . . , xr⟩. In particular, for any such r-tuple, we have that

Tx1X ⊂ ⟨Tx1(X), . . . , Txr (X)⟩ = Tq(σr(X)) = ⟨Tp1(X), . . . , Tpr (X)⟩.

Hence, the projection of π−1(q) to one of the first factor defines a subvariety C ⊂ X which concludes the proof. □

Definition 2.4.3. For a general set of points {p1, . . . , pr} ⊆ X, consider the Zariski-closure of

{q ∈ Xsmooth : Tq(X) ⊆ ⟨Tp1(X), . . . , Tpr (X)⟩}.

and let Γp1,...,pr be the union of the components containing at least one of the pi’s. We call it k-tangential
contact locus. If the latter is positive dimensional, we say that X is k-tangentially defective.

Clearly, for general points {p1, . . . , pr} ⊂ X ⊂ Pn and a general hyperplane H ⊂ Pn, we have that

Γp1,...,pr ⊂ Σ(H).

Lemma 2.4.4. Let X ⊆ Pn be r-defective. Let {p1, . . . , pr} ⊂ X be general and L = ⟨Tp2(X), . . . , Tpr (X)⟩. Let
πL the linear projection from L. Then, πL has positive dimensional general fiber.

Proof. We do it only for the case r = 2. Let q = πL(p1) and L = Tp2(X). By Terracini’s Lemma, X is 2-
defective if and only if Tp1(X) ∩ Tp2(X) ̸= ∅. Since Tq(πL(X)) = πL(Tp1(X)), we deduce that dimTq(πL(X)) <
dimTp1(X). □

Exercise 2.4. Prove Lemma 2.4.4 for r > 2.

Theorem 2.4.5. Let X ⊆ Pn a r-defective projective variety. Let {p1, . . . , pr} be a general set of points on X.
Then, Γp1,...,pr is positive dimensional.

Proof. Let L = ⟨Tp2(X), . . . , Tpr (X)⟩ and q = πL(p1). By the Lemma 2.4.4, q has a fiber with a positive dimen-
sional component passing through p1. Since πL(⟨Tp1(X), . . . , Tpr (X)⟩) = Tq(πL(X)), then ⟨Tp1(X), . . . , Tpr (X)⟩
is tangent along all fiber of q. □

Therefore, we have that

r-defective =⇒ r-tangential defective =⇒ r-weakly defective.

Note that opposite directions does not hold. For example, a variety which is r-weakly defective but not r-defective
is the degree-6 Veronese surface ν6(P2). We will see it in Lecture III, see Remark 3.3.3.
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Remark 2.4.6. The study of tangential contact loci is strictly related to the study of identifiability. A point
p ∈ Pn is said to be identifiable with respect to an algebraic variety X ⊂ Pn if there exists a unique r-tuple
{q1, . . . , qr} ⊂ X with r = rkX(p) such that p = ⟨q1, . . . , qr⟩. In [CO12, Proposition 2.4], it is proved that if X
is not k-tangentially defective, i.e., Tq(X) ⊆ ⟨Tp1(X), . . . , Tpr (X)⟩ if and only if q = pi, then X is k-identifiable,
i.e., the general element p ∈ σk(X) is identifiable.

Lecture III

In Lecture II, we have seen that the problem of computing dimensions of secant varieties is translated to a linear
algebra question on the intersection of general tangent spaces by Terracini’s Lemma. With a further study of
tangent spaces to Veronese varieties, the problem is translated to a polynomial interpolation problem.

3.1. An interpolation problem: fat points. Let consider the general framework of an integral polarized
variety (X,L) where L is a line bundle that defines an embedding of X into the (dual) projective space of its
global sections. If {s0, . . . , sd} is a basis for the space of global sections H0(Pn,L), then the embedding is

φL : Pn −→ P(H0(Pn,L)∨), p 7→ (s0(p) : . . . : sd(p))

Example 3.1.1. Consider for example (X,L) = (Pn,OPn(d)) where the space of global sections of OPn(d)
corresponds to the space of degree-d homogeneous polynomials in n + 1 variables. Hence, we consider the
standard monomial basis of the space of global sections H0(Pn,OPn(d)) and the embedding φL corresponds
to the Veronese embedding defined in Example 1.1.8. Similarly, the Segre-Veronese embeddings defined in
Example 1.1.10 correspond to (Pn1 × . . .× Pnm ,OPn1×...×Pnm (d1, . . . , dm)).

By definition, the pull-back of a hyperplane in P(H0(X,L)∨) corresponds to an element of the linear system L on
X. Let p ∈ X and q = φL(p). If H ⊆ P(H0(X,L)∨) is a hyperplane containing the tangent space Tq(φL(X)), then
the pull-back ofH corresponds to an elementD = φ∗

L(H) ∈ L which is singular at p. Indeed, if p is a smooth point,
since H∩Tp(X) = Tp(X∩H), then X∩H is singular at p if and only if dimTp(X∩H) > dim(X∩H) = dim(X)−1,
namely, dimH ∩ Tp(X) ≥ dimX, i.e., Tp(X) ⊆ H.

Example 3.1.2. Consider the point p = (1 : 0 : . . . : 0) ∈ Pn defined by the ideal Ip = (x1, . . . , xn). Let
f =

∑
|α|=d cαx

α ∈ k[x0, . . . , xn] be a degree-d homogeneous polynomial in n + 1 variables. Assume that f is

singular at p, i.e., ∂xi(f)(p) = 0 for all i ∈ {0, . . . , n}. By direct computation,

∂x0(f)(p) = cd,0,...,0 and ∂xi(f)(p) = cd−1,...,1,...,0, for i = 1, . . . , n.

Therefore, f is singular at p if and only if f ∈ (x1, . . . , xn)2. I.e., f contains the 2-fat point supported at p.

Definition 3.1.3. Let X be a projective variety and p ∈ X. The m-th fat point supported at p, denoted mp,
is the 0-dimensional scheme defined by the m-th power Imp,X of the ideal sheaf of p ∈ X.

Lemma 3.1.4. Let (X,L) be as above and such that L defines a closed embedding of X in P(H0(X,L)∨). Let
N + 1 = dimH0(X,L)∨. Then,

dimσs(φL(X)) = N − dimH0(IZ,X ⊗ L)

where Z = 2p1 + . . .+ 2ps is a scheme of 2-fat points with general support.

Proof. By Terracini’s Lemma, dimσs(φL(X)) = dim⟨Tq1(φL(X)), . . . , Tqs(φL(X))⟩. The latter corresponds to
the codimension of the linear space of hyperplanes in P(H0(X,L)∨) containing all the tangent spaces Tqi(φL(X))
for i = 1, . . . , s. I.e.,

dimσs(φL(X)) = N − dim
{
H ⊆ P(H0(X,L)∨) : H hyperplane, H ⊃ Tqi(X), for all i = 1, . . . , s

}
.

As mentioned above, the condition H ⊃ Tqi(X) is equivalent to say that the pull-back of H is a divisor in L
which is singular at pi = φ−1

L (qi), i.e., D = φ∗
L(H) ∈ I2pi,X . □

3.2. Defective Veronese varieties. Following the previous notation, Veronese varieties are given by (X,L) =
(Pn,OPn(d)). Given any 0-dimensional scheme Z, we denote by Ln,d(Z) the linear system of degree-d hypersur-
faces in Pn containing Z. In particular, if Z is a scheme of s 2-fat points with general support, then we write
Ln,d(2s) := Ln,d(Z) for the linear system of degree-d hypersurfaces of Pn that are singular at s general points.
For any linear system L, we denote the dimension of L as h0(L) := dimH0(L). Hence, by Lemma 3.1.4,

dimσs(νd(Pn)) = N − h0(Ln,d(2s)), with N =

(
n+ d

n

)
− 1.

Every singular point imposes n + 1 conditions on the linear space of degree-d hypersurfaces of Pn: the passage
through the point and the vanishing of all tangent directions. Algebraically, these are given by the vanishing
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of the evaluations of the n + 1 partial derivatives at the support points. Assuming that the pi’s are in general
position, we may expect that all conditions are independent, i.e.,

exp .h0(Ln,d(2s)) = max{0, N + 1− (n+ 1)s}

which corresponds to the expected codimension of σs(νd(Pn)) by Lemma 3.1.4.

In Example 2.3.2, we have seen a first example of defective variety by using directly Terracini’s Lemma. We present
here all defective cases Veronese varieties, explained from the polynomial interpolation interpretation.

Example 3.2.1 (Quadrics). Consider Ln,2(2s). Let {p1, . . . , ps} be a general set of points. Assume s ≤ n.
By Bèzout’s Theorem, every hypersurface of Ln,2(2s) has to be singular along all the lines ⟨pi, pj⟩ for i ̸= j.
Consequently, it has to be singular along all the linear span ⟨p1, . . . , ps⟩. In other words, Ln,2(2s) consits of
quadratic cones with vertex ⟨p1, . . . , ps⟩. That corresponds to the space of quadrics in Pn−s. Hence, for s ≤ n,

h0(Ln,2(2s)) = h0(Ln−s,2) =

(
n− s+ 2

2

)
.

Therefore, we have that for s ≤ n,

dimσs(ν2(Pn)) =

(
n+ 2

2

)
− 1− h0(Ln,2(2s))

=

(
n+ 2

2

)
− 1−

(
n− s+ 2

2

)
= s(n+ 1)− 1−

(
s

2

)
i.e., ν2(Pn) s-defective with defect

(
s
2

)
for any n.

Example 3.2.2 (Quartics in Pn for n = 2, 3, 4). Consider Ln,4(2s) with s =
(
n+2
2

)
−1. For n = 2, 3, 4, we expect

the linear system to be empty since, for 2 ≤ n ≤ 4, we have(
n+ 4

4

)
−

((
n+ 2

2

)
− 1

)
n ≤ 0

equivalently, we expect σs(ν4(Pn)) to fill the ambient space for n = 2, 3, 4. However, Ln,2(1s) is 1-dimensional,
indeed, by simple linear algebra, there is a unique quadric passing through

(
n+2
2

)
− 1 simple points in general

position. Let D be such quadric. Then, 2D ∈ Ln,4(2s). It is easy to show computationally that this is indeed
the unique quartic for a specific choice of the points and then, by semicontinuity, for general points. Therefore,
σs(ν4(Pn)) is s-defective with s-defect equal to 1 for n = 2, 3, 4.

Example 3.2.3 (Cubics in P4 with 7 general singularities). Consider L4,3(27). The linear system is again
expected to be empty by parameter count, indeed,

(
4+3
3

)
− 7 · 5 = 35− 35 = 0. However, it is classically known

that there exists a unique Rational Normal Curve Cd ⊆ Pd passing through d + 3 general points, see [Har,
Theorem 1.18]; in particular, there exists a C4 ⊆ P4 through seven general points. Up to a change of coordinates,
the Rational Normal Curve is defined by the 2× 2 minors of the matrixx0 x1 x2

x1 x2 x3
x2 x3 x4

 ,

see [Har, Example 1.16]. Now, the 2-nd secant variety of C4 is defined by the determinant of the latter matrix, i.e.,
it is a cubic hypersurface which is singular along all the curve C4 and, in particular, at all the seven points. I.e.,
σ2(C4) ∈ L4,3(27). Again, this is the unique cubic hypersuface with seven singular points. Therefore, σ7(ν3(P4))
is 7-defective with 7-defect equal to 1.

These defective cases were classically known. See for example the works by Campbell [Cam91], Palatini [Pal09],
Terracini [Ter15], Castelnuovo [Cas89, Cas91] and Segre [Seg61]. However, the complete proof that they are the
only defective Veronese varieties appeared only in 1995 after a series of papers by Alexander and Hirschowitz
[Ale88, AH92b, AH92a, AH95].

Theorem 3.2.4 (Alexander-Hirschowitz Theorem, [AH95]). The linear system Ln,d(2s) has dimension as ex-
pected except in the following cases:

• d = 2, any n ≥ 2 and 2 ≤ s ≤ n;
• d = 3, n = 4, s = 7;
• d = 4, (n, s) ∈ {(2, 5), (3, 9), (4, 14)}.

By Lemma 3.1.4, the result is read as follows.
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Corollary 3.2.5. Let d, n ∈ N. Then, the Waring rank of a general degree-d form in n+ 1 variables is

wrk◦(d, n) =

⌈(
n+d
d

)
n+ 1

⌉
except in the following cases:

• wrk◦(2, n+ 1) = n+ 1;
• wrk◦(3, 5) = 8 instead of 7;
• wrk◦(4, n+ 1) =

(
n+2
2

)
instead of

(
n+2
2

)
− 1 for n = 2, 3, 4.

3.3. Plane curves. In order to get familiar with the approach to defectivity of secant varieties through the
study of linear systems with multiple base points, we consider here the case n = 2.

First, let us recall some easy, but important observations.

Remark 3.3.1. Let Z,Z′, Z′′ be 0-dimensional schemes such that Z′ ⊆ Z ⊆ Z′′.

(1) If Z imposes independent conditions on the linear system L, i.e., h0(L(Z)) = h0(L)− deg(Z), then the
same is true for Z′. Indeed, if, by contradiction h0(L(Z′)) > h0(L)− deg(Z′), then

h0(L(Z)) ≥ h0(L(Z′))− deg(Z ∖ Z′)

> h0(L)− deg(Z′)− deg(Z ∖ Z′) = h0(L)− deg(Z).

(2) If L(Z) is empty, then L(Z′′) is empty. Indeed, L(Z′′) ⊆ L(Z).

We prove Alexander-Hirschowitz Theorem in the plane.

Theorem 3.3.2. The linear system L2,d(2s) is non-defective except for (d, s) ∈ {(2, 2), (4, 5)}. In particular, the
general Waring rank for ternary forms of degree-d is

wrk◦(d, 3) =

⌈(
d+2
2

)
3

⌉
except for:

• d = 2, where wrk◦(2, 3) = 3, instead of 2;
• d = 4, where wrk◦(4, 3) = 6, instead of 5.

Proof. The low degree cases can be approached directly.

The case d = 1 is trivial. The case d = 2 is Example 3.2.1.

Case d = 3. By Bèzout’s Theorem, every cubic with two singular points contains all the line passing through
them. It is immediate to observe that there is a unique cubic with three singularities: that is the union of the
three lines passing through all pairs of the three base points. Hence, h0(L2,3(23)) = 1 as expected. Hence, by
Remark 3.3.1 we can immediately conclude that L2,3(2s) is non-defective for every s.

Case d = 4. We have seen in Example 3.2.1 that h0(L2,4(25)) = 1 instead of 0: indeed, there is a unique quartic
with five general singularities that is the the double conic passing through the five base points. Therefore, we
immediately get h0(L2,4(2s)) = 0 for s > 5. It is easy to show that h0(L2,4(24)) = 3 by finding three linearly
independent totally reducible quartics (products of four lines) that do not have four general singular points: if
Z = 2p1 + 2p2 + 2p3 + 2p4 are the four general 2-fat points and ℓij = ⟨pi, pj⟩, then we consider the four quartics
Qi = ℓjhℓjkℓhkℓ

′
i ̸∈ L2,4(Z), for i = 1, . . . , 4, where {j, h, k} = {1, . . . , 4} ∖ {i} and ℓi is a general line passing

through pi. By Remark 3.3.1, L2,4(2s) is non-defective for s ≤ 4.

Case d ≥ 5. We proceed by contradiction. By Remark 3.3.1, it is enough to consider the case s =

⌊
(2+d

2 )
3

⌋
.

Let D ∈ L2,d(2s). If L2,d(2s) was defective, by Lemma 2.4.2, we would have that D contains a double curve
2C where C ∈ L2,e(1s). Then, 2e ≤ d and, since general simple points always impose independent conditions,
s ≤

(
2+e
2

)
− 1. Hence, ⌊

(d+ 2)(d+ 1)

6

⌋
= s ≤ (e+ 2)(e+ 1)

2
− 1

≤
( d
2

+ 2)( d
2

+ 1)

2
− 1 =

d

4

(
d

2
+ 3

)
.
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The inequality
⌊

(d+2)(d+1)
6

⌋
≤ d

4

(
d
2

+ 3
)

holds only for d ≤ 4 (already considered) and d = 6. For d = 6, the

latter chain of inequalities forces s = 9. In this case, we know that there exists a unique cubic C passing through
nine points and 2C is the unique sextic with nine general singularities. Hence, h0(L2,6(29)) = 1 as expected. □

Remark 3.3.3 (Weakly defective variety, but non-defective). The latter proof gives us also an example of a
variety which is r-weakly defective but non-defective, see Section 2.4. Indeed, we have seen that a planar sextic
singular at 9 general points is actually singular along the whole unic cubic passing through the points. In other
words, fixing nine general points on ν6(P2) we obtain a positive dimensional contact locus. At the same time, it
is not defective because the expected dimension of L2,6(29) is

(
2+6
2

)
− 3 · 9 = 28− 27 = 1.

3.4. Cremona reductions. After having considered binary forms (Remark 2.2.3) and ternary forms (Theo-
rem 3.3.2), we move to quaternary forms. Since quadrics are defective (Example 3.2.1), we start by cubics.

Example 3.4.1 (Quaternary cubics). Consider the linear system L3,3(2s). By Remark 3.3.1, it is enough
to consider the case s = 5 for which we expect the linear system to be empty. For s = 4, by semicon-
tinuity, we may consider the scheme of 2-fat points supported at the four coordinate points in P3 and it
is easy to prove that h0(L3,3(24)) = 4 by showing that a base for the linear system is given by the cubics
⟨x0x1x2, x0x1x3, x0x2x3, x1x2x3⟩. Now, consider the Cremona transformation

(3.9) P3 99K P3, (x0 : x1 : x2 : x3) 7→ (x0x1x2 : x0x1x3 : x0x2x3 : x1x2x3).

Cubic surfaces singular at the four coordinate points are mapped to hyperplanes. If we assume the existence
of a cubic surface with a fith singular point, i.e., if we assume that h0(L3,3(25)) > 0, then such cubic would be
mapped to a hyperplane with a singular point, which is clearly absurd.

Remark 3.4.2 (Cremona Reduction). The latter idea of using Cremona transformations to transform a linear
system to another with the same dimension and, hopefully, easier to compute is general. Generalizing (3.9), in
Pn, we consider the standard Cremona transformation

Crn : Pn 99K Pn, (x0 : . . . : xn) 7→ (x−1
0 : . . . : x−1

n ) =

(
x0 · · ·xn

x0
: . . . :

x0 · · ·xn
xn

)
.

Given a scheme of general fat points Z = m0p0+. . .+msps with s ≥ n+1, we write Ln,d(m0, . . . ,ms) := Ln,d(Z).
Without loss of generality, we may assume that the first n+1 of the base points are the coordinate points. Then,
the following useful lemma holds. See also [LU06].

Lemma 3.4.3 (Cremona Reduction Lemma). Fixed integers n, d,m0, . . . ,ms, let k = (n− 1)d−m0 − . . .−ms.
Then,

Crn(Ln,d(m0, . . . ,ms)) = Ln,d+k(m0 + k, . . . ,mn + k,mn+1, . . . ,ms)

Proof. Since the Cremona transformation is an isomorphism outside the base locus, it is enough to prove the
case s = n. This can be shown by observing that if {x0, . . . , xn} are the cooridinates on Pn, then, for any
(a0, . . . , an) ∈ Nn+1 with

∑
i ai = d, we have

Crn(xa0
0 · · ·x

an
n ) = xd−a0

0 · · ·xd−an
n .

Now, a basis of the linear system Ln,d(m1, . . . ,mn+1) is given by all degree-d monomials xa0
0 · · ·xan

n such that
0 ≤ ai ≤ d−mi. Under such constraints, we can additionally write

Crn(xa0
0 · · ·x

an
n ) = (xm0

0 · · ·xmn
n ) · (xd−a0−m0

0 · · ·xd−an−mn
n ).

Note that,
∑

i(d− ai −mi) = d− k. Moreover, since 0 ≤ ai ≤ d−mi, we have

0 ≤ d− ai −mi ≤ (d+ k)− (mi + k),

i.e., the monomial xd−a0−m0
0 · · ·xd−an−mn

n is an element of the monomial basis of Ln,d+k(m0 + k, . . . ,mn + k).
In other words, the Cremona map induces a bijection between the two monomial basis. □

In Example 3.4.1, we considered L3,3(25). Then, Lemma 3.4.3 tells us exactly that

Cr3(L3,3(24)) = L3,1(2)

because k = 2 · 3− 2 · 4 = −2.

Therefore, whenever we have a linear system Ln,d(m0, . . . ,ms) for which k = (n− 1)d−m0− . . .−ms < 0, then
we may transform the linear system to an equidimensional linear system on hypersurfaces with lower degree and
with simpler singularities. On the other hand, if k ≥ 0, we say that Ln,d(m0, . . . ,ms) is Cremona reduced.
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Lecture IV

In Lecture III, we translated the study of defective Veronese varieties to polynomial interpolation problems. We
presented the list of all defective cases and we proved Alexander-Hirschowitz Theorem in the case of planar curves.
In higher dimensional spaces, we need more tools in order to prove inductively results of non-defectiveness.

4.1. Degeneration techniques for non-defectiveness. In order to prove that a linear system with multiple
base points has dimension as expected we can argue by degeneration.

Let L be a linear system of divisors in Pn and, for any scheme Z ⊆ Pn, let L(Z) be the linear subsystem of

divisors in L that contain Z. If Z̃ is a degeneration of Z, by semicontinuity, the dimension can only increase,
i.e.,

(4.10) exp . dimL(Z) ≤ dimL(Z) ≤ dimL(Z̃).

Hence, in order to prove that L(Z) has dimension as expected, we may look for a specialization Z̃ for which we
can prove that left and right-hand-side of (4.10) coincide.

4.1.1. Castelnuovo’s exact sequence and “la mèthode d’Horace”. The first idea, which goes back to Castelnuovo
[Cas91], is to specialize the support of (some of) the base points of the linear system to lie on a hyperplane
or, more generally, on a subvariety. Given a subvariety H ⊆ Pn, for any 0-dimensional scheme Z, we have the
following exact sequence of line bundles, known as Castelnuovo’s exact sequence,

0→ L(Z,H)→ L(Z)→ L(Z)|H → 0

where L(Z)|H is the restriction on H and L(Z,H) is the linear subsystem of divisors of L(Z) containing H. By
passing to homology, we obtain

0→ H0(L(Z,H))→ H0(L(Z))→ H0(L(Z)|H)

and, therefore, we get

(4.11) h0(L(Z)) ≤ h0(L(Z,H)) + h0(L(Z)|H).

Let us go back to our case. Let Z ⊆ Pn be any 0-dimensional scheme and let L = Ln,d be the linear system of
degree-d hypersurfaces in Pn. Assume H ∼= Pn−1 to be a hyperplane. We call:

• residue of Z with respect to H the scheme obtained by removing from Z its intersection with H, i.e.,
the scheme whose defining ideal is I(Z) : H and denoted ResH(Z);

• trace of Z with respect to H the schematic intersection Z ∩H and denoted TrH(Z).

Therefore, it is immediate to see that:

• Ln,d(Z,H) ∼= Ln,d−1(ResH(Z));
• Ln,d(Z)|H ∼= Ln−1,d(TrH(Z)).

Remark 4.1.1. If Z = mp is a m-fat point in Pn and p ∈ H where H is a hyperplane, then:

• ResH(Z) is a (m− 1)-fat point in Pn;
• TrH(Z) is a m-fat point in Pn−1.

Assume, p = (1 : 0 : . . . : 0), Z = mp defined by I(Z) = (x1, . . . , xn)m and H = {xn = 0}. Then:

• ResH(Z) is defined by the ideal (x1, . . . , xn)m : (xn) = (x1, . . . , xn)(m−1);
• TrH(Z) is defined by (x1, . . . , xn)m ⊗ k[x0, . . . , xn]/(xn) = (x1, . . . , xn−1)m ⊆ k[x0, . . . , xn−1].

Therefore, combining (4.10) and (4.11), we obtain the following:

(4.12) exp . dimLn,d(Z) ≤ dimLn,d(Z) ≤ dimLn,d−1(ResH(Z̃)) + dimLn−1,d(TrH(Z̃)).

Note that on the right-hand-side we have linear systems of hypersurfaces either of lower degree or in lower
dimension. Therefore, (4.12) is the core of an approach by double induction on (d, n) where the specialization Z̃
is carefully chosen. Let us see it in a concrete example.

Example 4.1.2 (Quaternary quartics). Let n = 3, d = 4. We have seen in Example 3.2.2 that L3,4(29) is
defective and 1-dimensional, i.e., σ9(ν4(P3)) is a hypersurface instead of filling the ambient space as expected.
From this, it is trivial that L3,4(2s) is empty, as expected, for s ≥ 9. Consider s = 8. The expected dimension is

exp .h0 (L3,4(28)
)

= max

{
0,

(
3 + 4

3

)
− 8(3 + 1)

}
= max{0, 35− 32} = 3.
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Let H ∼= P2 be a general plane. Let Z be a scheme of eight 2-fat points and let Z̃ be a specialization of Z such
that Z̃ = 2p1 + . . .+ 2p8 with p1, p2, p3, p4 ∈ H and p5, p6, p7, p8 general points outside H. Therefore:

ResH(Z̃) = p1 + . . .+ p4 + 2p5 + . . .+ 2p8 ⊆ P3 and TrH(Z̃) = 2p5 + . . .+ 2p8 ⊆ H.
By Theorem 3.3.2, we know that h0(L2,4(TrH(Z)) = h0(L2,4(24)) =

(
2+4
4

)
− 4 · 3 = 15− 12 = 3.

Now, we look at L3,3(ResH(Z̃)). The linear system L3,3(24) = L3,3(2p5+ . . .+2p8) is non-defective. In particular,
h0(L3,3(24)) = 4. The four extra simple points p1, . . . , p4 on H impose four independent conditions on L3,3(24).
Indeed, a general point on H fails to impose a condition on a linear system if all divisors in the linear system
contain already H. In our case, there are no elements of L3,3(24) that are union of a quadric and H since, by
Example 3.2.1, h0(L3,2(24)) = 0. Hence,

3 = exp .h0 (L3,4(28)
)
≤ h0(L3,3(ResH(Z))) + h0(L2,4(TrH(Z))) = 0 + 3.

By Remark 3.3.1, we conclude that L3,4(2s) is non-defective also for s ≤ 8.

Remark 4.1.3 (La mèthode d’Horace). The degeneration approach followed in Example 4.1.2 was introduced by
Hirschowitz [Hir85] under the name of Horace method. An ancient legend from the Roman kingdom era narrates
of the war between Rome and the neighboring city of Alba Longa. In order to avoid a bloody war between their
armies, it was decided that the war would have been decided by an epic clash between the two triplets of Roman
Horatii and the Alban Curiatii. Shortly after the beginning of the fight, only one of the Horatii survived while
the Curiatii were left wounded in different ways. Publius’ idea was to start running so that, during the chase, the
Curiatii would have been splitted a part due to their different speeds. This allowed Publius’ to fight the Curiatii
one by one and win the fight. Hirschowitz probably felt that he could not deal with all the required singularities
by one and, inspired by the legend, he started to split them in smaller schemes and approach them one by one.

As already mentioned, the Horace method and the use of Castelnuovo’s Exact Sequence allows us to follow a
double-induction approach on degree and dimension. However, as we have noticed in Example 4.1.2, the residual
scheme is in special position: it is composed by a union of general 2-fat points and a set of simple points which are
general on a hyperplane. Similarly as in Example 4.1.2, the conditions imposed by the union of general 2-fat points
is deduced by induction, but we need a way to deal with the simple points specialized on a hyperplane.

Lemma 4.1.4 ([CGG07, Lemma 1.9]). Let Z ⊆ Pn be a 0-dimensional scheme and let H be a hyperplane. Let
p1, . . . , ps ∈ H be general points on H. Let Z′ = ResH(Z).

(1) If h0(Ld(Z + p1 + . . .+ ps−1)) > h0(Ld−1(Z′)), then h0(Ld(Z + p1 + . . .+ ps)) = h0(Ld(Z))− s.
(2) If h0(Ld(Z)) ≤ s and h0(Ld−1(Z′)) = 0, then h0(Ld(Z + p1 + . . .+ ps)) = 0.

Proof. (1) We proceed by induction on s. If s = 1 and h0(Ld(Z)) > h0(Ld−1(Z′)) then there is a hypersurface in
Ld(Z) which does not contain H. Hence, p1 imposes one condition and h0(Ld(Z+p1)) = h0(Ld(Z))−1. Assume
s > 1. Since h0(Ld(Z+p1 + . . .+ps−1)) > h0(Ld−1(Z′)), there is a hypersurface in Ld(Z+p1 + . . .+ps−1) which
does not contain H. Hence, h0(Ld(Z + p1 + . . .+ ps)) = h0(Ld(Z + p1 + . . .+ ps−1))− 1. Now, by induction,

h0(Ld(Z + p1 + . . .+ ps)) = h0(Ld(Z + p1 + . . .+ ps−1))− 1 = h0(Ld(Z))− s.
(2) If h0(Ld(Z)) = 0 then it is obvious. Assume h0(Ld(Z)) = v > 0. Hence, h0(Ld(Z + p1 + . . .+ pv−1)) > 0 =
h0(Ld−1(Z′)). By (1), h0Ld(Z + p1 + . . .+ pv) = h0(Ld(Z))− v = 0. Since s ≥ v, the claim follows. □

Exercise 4.5 (Quaternary quintics). Show that L3,5(2s) is never defective.

4.1.2. La mèthode d’Horace differentielle. After having considered the case of quaternary quartics and quintics,
we consider the case of sextics. We notice very quickly that the Horace method described in the previous section
cannot succeed due to numerical constraints.

Example 4.1.5 (Quaternary sextic: failure of Horace method). Since h0(L3,6) =
(
3+6
3

)
= 84. Since a 2-fat

point imposes four conditions, by Remark 3.3.1, it is enough to consider the case L3,6(221) which is expected to
be empty. Again, let Z = 2p1 + . . . + 2pt + 2pt+1 + . . . + 2ps with {p1, . . . , pt} ⊆ H general points on a general
hyperplane H and {pt+1, . . . , ps} general points outside H. Then, the inequality (4.12) becomes

(4.13) 0 ≤ h0(L3,6(221)) ≤ h0(L3,5(ResH(Z))) + h0(L2,6(TrH(Z))).

By Theorem 3.3.2, h0(L2,6(TrH(Z))) = max{0, 28 − 3t} which is equal to 0 if and only if t ≥ 10. On the other
hand, if t ≥ 10, then

h0(L3,5(ResH(Z))) ≥ 56− deg(ResH(Z))

= 56− 4(21− t)− t = −28 + 3t ≥ 2.

In other words, there is no way for the right-hand-side of (4.13) to be equal to 0.
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Within a series of enlightening papers [Ale88, AH92b, AH92a, AH95, AH00], Alexander and Hirschowitz de-
veloped a stronger version of the Horace method which allows to overcome the arithmetic issues observed in
Example 4.1.5. Roughly speaking, the idea is to degenerate a 2-fat point on a hyperplane H in such a way the
trace on H is not a 2-fat point on H, but it is a simple point. We follow [AH00, Section 9].

Let Z = mp be a m-fat point supported at (1 : 0 : . . . : 0) ∈ Pn. The ideal I = I(Z) = (x1, . . . , xn)m can be
decomposed as

I = (x1, . . . , xn−1)m ⊕ (x1, . . . , xn−1)m−1 · xn ⊕ . . .⊕ (x1, . . . , xn−1) · xm−1
n ⊕ (xmn ).

This trivial algebraic description is translated geometrically by saying that Z is vertically graded with respect to
xn (and actually to any x1, . . . , xn) in the sense that Z can be constructed by infinitesimally piling up a series
of j-th fat points on {xn = 0} for j ∈ {0, . . . ,m− 1}. We say that these are the slices of Z. Only the first layer,
the one corresponding to (x1, . . . , xn−1)m belongs to H and that is indeed the trace of Z on H as interpreted in
Remark 4.1.1. The heuristic idea of the differential Horace method is that Z can actually be degenerated in such
a way the trace on H can be any of its slices. In other words, for any p ≥ 0, we define:

• the p-th residue of Z with respect to H as the 0-dimensional scheme defined by

I(RespH(Z)) = I(Z) + (I(Z) : I(H)p+1)I(H)p;

• the p-th trace of Z on H as the 0-dimensional scheme defined by

I(TrpH(Z)) = (I(Z) : I(H)p)⊗ k[x0, . . . , xn]/I(H).

For p = 0, these are the residue and trace defined in Remark 4.1.1.

Let us see the case p = 1 in the case 2-fat points.

Example 4.1.6. Let Z = 2p ⊆ Pn with p = (1 : 0 : . . . : 0) defined by (x1, . . . , xn)2. Then:

• the 1-st residue is

I(Res1H(Z)) = (x1, . . . , xn)2 + ((x1, . . . , xn)2 : (xn)2)xn

= (x1, . . . , xn)2 + (xn) = (x1, . . . , xn−1)2 + (xn),

i.e., it is a 0-dimension scheme in Pn which is equal to a 2-fat point on H;
• the 1-st trace is

I(Tr1H(Z)) =
(
(x1, . . . , xn)2 : (xn)

)
⊗ k[x0, . . . , xn]/(xn)

= (x1, . . . , xn)⊗ k[x0, . . . , xn]/(xn),

i.e., it is the simple point on H supported at the origin.

Remark 4.1.7. The latter idea can be generlized to any 0-dimensional scheme that is vertically graded with
respect to a smooth divisor passing through its support.

The differential Horace Lemma for 2-fat points goes as follows.

Lemma 4.1.8 (Differential Horace Lemma, [AH00]). Let H ⊆ Pn be a hyperplane. Let Z be a 0-dimensional
scheme and let p1, . . . , pt be general points on H. Let DH(pi) = 2pi ∩H. Assume that:

(1) h0(Ln,d−1(ResH(Z) +DH(p1) + . . .+DH(pt))) = 0,
(2) h0(Ln−1,d(TrH(Z) + p1 + . . .+ pt)) = 0,

then, h0(Ln,d(Z)) = 0.

Example 4.1.9 (Quaternary sextics: via differential Horace Lemma). Consider L3,6(221) which is expected to
be empty. As we have seen in Example 4.1.5, the standard Horace method fails because airthmetically we were
overshoothing two conditions by specializing 10 among the 21 base points. Therefore, consider a degeneration of
the general scheme of 21 2-fat points by specializing 9 points in the classic way and one differentially. I.e., let H
be a general hyperplane and let Z be a scheme of 21 2-fat points such that

ResH(Z) = p1 + . . .+ p9 +DH(p10) + 2p11 + . . .+ 2p21

and

TrH(Z) = 2p1 + . . .+ 2p9 + p10 ⊆ H.

• Consider L2,6(TrH(Z)). By Theorem 3.3.2, we know that h0(L2,6(29)) = 28− 9 · 3 = 1. Hence,

h0(L2,6(TrH(Z))) = 0.
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• Consider L3,5(ResH(Z)). We apply Lemma 4.1.4(ii). Note that

DH(p10) + 2p11 + . . .+ 2p21 ⊆ 2p10 + 2p11 + . . .+ 2p21

where p10, . . . , p21 are general points in P3. Hence, by Exercise 4.5, h0(L3,5(212)) = 56− 12 · 4 = 8. By
Remark 3.3.1, h0(L3,5(DH(p10)+2p11 + . . .+2p21)) = 9. Moreover, by Example 4.1.2 and Remark 3.3.1,
h0(L3,4(p10 + 2p11 + . . .+ 2p21)) = 0. Therefore, by Lemma 4.1.4(ii), we deduce

h0(L3,5(ResH(Z))) = 0.

Hence, we conclude that L3,6(221) is empty by (4.12). By Remark 3.3.1, L3,6(2s) is never defective.

Remark 4.1.10. After the successfull approach introduced by Alexander and Hirschowitz, the same method-
ology has been applied also to other cases, such as the study of dimensions of secant varieties of Segre and
Segre-Veronese varieties or to study dimensions of linear systems of hypersurfaces with base points of higher
multiplicities. At the same time, different degeneration techniques have been proposed leading to different proofs
of Alexander-Hirschowitz Theorem. For example, Chandler’s Curvilinear Lemma [Cha01] or Brambilla and Ot-
taviani degeneration of supports over higher codimensional varieties [BO08]. The latter led to the classification
of defective tangential varieties of Veronese varieties [AV18].Postinghel [Pos12] exploited a degeneration of the
projective space to a reducible variety via a blow-up construction, see [Ran89, CM98, CM98]. Another degenera-
tion technique, which can be explained also through a blow-up construction and a degeneration of the projective
space to a reducible variety, was due to Evain [Eva97] who considered collisions of (part of) the base points of
the linear system: this has been exploited recently to deduce a non-defectiveness criterion in [GO22].

Remark 4.1.11. It is worth to mention that the latter dgeneration technique mentioned in Remark 4.1.10 has
been also used by Galuppi and Mella in [GM19]. In this work, the authors completed the classification of pairs
(d, n) for which the general degree-d homogeneous polynomial in n + 1 variables is identifiable, i.e., it admits a
unique minimal Waring decomposition, see Remark 2.4.6. In particular, they show that the only special cases
for which a general form is rank-r identifiable are:

• odd binary forms (n = 1, d = 2s− 1, r = s), see Proposition 5.2.7;
• quaternary cubics (n = 3, d = 3, r = 5), known as Sylvester’s Pentehedron Theorem, see [Dol12,

Section 9.4.1];
• ternary quintics (n = 2, d = 5, r = 7), see [Pal03].

4.2. Segre varieties and multiprojective linear systems. We conclude this lecture by commenting also on
defectiveness of Segre and Segre-Veronese varieties. As recalled in Example 1.1.10, Segre-Veronese varieties deal
with partially-symmetric tensors. This can be rephrased by considering multigraded polynomials.

Indeed, if xi = (xi,0, . . . , xi,ni) are tuples of variable, let

S = k[x1; . . . ;xm] = k[x1]⊗ · · · ⊗ k[xm] =
⊕

i1,...,im

Si1,...,im

where Si1,...,im is the k-vector space of multihomogeneous polynomials of multidegree (i1, . . . , im).

A tensor T = (tj1,...,jm) ∈ kn1 ⊗ · · · ⊗ knm can be regarded as the multihomogeneous polynomial of multidegree
(1, . . . , 1) given by

∑
j1,...,jm

tj1,...,jmx1,j1 · · ·xm,jm . In particular, if vi = (vi,0, . . . , vi,ni) ∈ kni+1 are vectors, the
rank-one tensor T = v1⊗ . . .⊗vm can be regarded as the multihomogeneous polynomial ℓ1 · · · ℓm of multidegree
(1, . . . , 1) where ℓi = vi,0xi,0 + . . .+ vi,mxi,m ∈ k[xi] are linear forms in the i-th set of variables.

Since we want to approach the computation of dimensions of secant varieties via Terracini’s Lemma to study
dimensions of secant varieties of Segre-Veronese varieties, we need first to understand tangent space to the
Segre-Veronese varieties. To easy the notation, we write it in terms of multihomogeneous polynomials.

Let ℓd11 · · · ℓdmm ∈ νd(Pn) where Pn = Pn1 × . . .× Pnm . Then,

d

dt

∣∣∣∣
t=0

(ℓ1 + th1)d1 · · · (ℓm + thm)dm = ℓd1−1
1 h1ℓ

d2
2 · · · ℓ

dm
m + ℓd11 ℓ

d2
2 h2 · · · ℓdmm + . . .+ ℓd11 · · · ℓ

dm−1
m−1 ℓ

dm−1
m hm

=

m∑
i=0

ℓd11 · · · ℓdmm
ℓi

hi

hence, if ei = (0, . . . , 1, . . . , 0) is the coordinate vector with 1 in i-th entry,

T
[ℓ

d1
1 ···ℓdmm ]

νd(Pn) =

〈
Sei

ℓd11 · · · ℓdmm
ℓi

: i = 0, . . . ,m

〉
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By Lemma 3.1.4, dimensions of secant varieties to Segre-Veronese varieties are related to the study of multigraded
hypersurfaces with multiple base points. In other words, if p1, . . . , ps ∈ Pn are general points, then

dimσs(νd(Pn)) =

m∏
i=1

(ni + 1)− h0(Ln,d(2s))

where Ln,d(2s) is the linear system of hypersurfaces in Pn of multidegree d through s general 2-fat points.

Catalisano, Geramita and Gimigliano introduced the multi-affine-projective method, see [CGG05]. This method
allows to associate to the multigraded linear system Ln,d(2s) a linear system in Pn1+...+nm . The idea is as follows.
Let N =

∑
i ni. We consider the birational map obtained by composing the birational map

Pn 99K AN ,

((x1,0 : . . . : x1,n1), . . . , (xm,0 : . . . : xm,nm)) 7→
(

x1,1

x1,0
, . . . ,

x1,n1
x1,0

, . . . ,
xm,1

xm,0
, . . . ,

xm,nm
xm,0

)
,

with the natural embedding of AN into the chart of PN given by the first entry different from 0, i.e.,

AN
(

x1,1

x1,0
, . . . ,

x1,n1
x1,0

, . . . ,
xm,1

xm,0
, . . . ,

xm,nm
xm,0

)
→ 7→

PN
(

1 :
x1,1

x1,0
: . . . :

x1,n1
x1,0

: . . . :
xm,1

xm,0
: . . . :

xm,nm
xm,0

)
=

(x1,0 · · ·xm,0 : x1,1 · · ·xm,0 : . . . : x1,n1 · · ·xm,0 : . . . : x1,0 · · ·xm,1 : . . . : x1,0 · · ·xm,nm)

Let’s call such composition ψ : Pn 99K PN .

If we label the coordinates of PN by {z0, z1,1, . . . , z1,n1 , . . . , zm,1, . . . , zm,nm} and let q0, q1,1, . . . , qm,nm the cor-
responding coordinate points in PN . Then, for i = 1, . . . ,m, consider the linear spaces

Πi = ⟨qi,1, . . . , qi,ni⟩ ∼= Pni−1.

i.e., I(Πi) = (z0, z1,1, . . . , ẑi,1, . . . , ẑi,ni , . . . , zm,nm).

Lemma 4.2.1 ([CGG05]). Let Z ⊆ Pn be a 0-dimensional scheme with support within the chart x1,0 · · ·xm,0 ̸= 0
and Z′ = ψ(Z) ⊆ PN . Let d = (d1, . . . , dm) ∈ Nm and D =

∑
i di. Let

W = Z′ + (D − d1)Π1 + . . .+ (D − dm)Πm ⊆ PN .

Then,

h0(Ln,d(Z)) = h0(LN,D(W )).

The latter approach has the advantage of considering again linear systems in standard graded setting, as in the
case of Veronese varieties, but, at the same time, it has a clear draw-back: even if we start from the multigraded
Hilbert function of a 0-dimensional scheme, we might end up to a standard graded Hilbert function of higher-
dimensional non-reduced spaces. The latter issue is avoided in the case of products of P1’s for which this approach
allowed for a complete classification of defective cases.

4.3. The case of P1 × . . . × P1. In the special case of n = (1, . . . , 1), all linear spaces Πi in Lemma 4.2.1 are
0-dimensional. Namely, combining Lemma 3.1.4 and Lemma 4.2.1, we get the following.

Corollary 4.3.1. Let d = (d1, . . . , dm) and D =
∑

i di. Let Z = d1q1 + . . .+ dmqm + 2p1 + . . .+ 2ps ⊆ Pm be a
scheme of fat points where qi is the i-th coordinate point and the pi’s are general. Then, the s-th secant variety
to the Segre-Veronese variety νd(P1) is

dimσs(νd(P1)) = N − h0(Lm,D(Z)))

where N = 2m − 1 is the dimension of the ambient space P(k2 ⊗ . . .⊗ k2).

Example 4.3.2 (P1 × P1 × P1). Consider m = 3. I.e., let X = ν1,1,1(P1 × P1 × P1) ⊆ P7. Since X is a 3-fold
we expect that the 2-nd secant variety fills the ambient space. By Corollary 4.3.1, we need to consider the linear
system L3,3(25) which we know to be empty by Example 3.4.1.

Example 4.3.3 (P1 × P1 × P1 × P1 is 3-defective). Let X = ν1,1,1,1(P1 × P1 × P1 × P1) ⊆ P15. By the usual
parameter count, exp .dimσ3(X) = 3·4+2 = 14, hence, we expect σ3(X) to be a hypersurface. By Corollary 4.3.1,

dimσ3(X) = 15− h0(L4,4(34, 23)).

Now, we use the Cremona Reduction Lemma. Since k = 3 · 4− 3 · 4− 2 = −2, we have

dimσ3(X) = 15− h0(L4,2(14, 22)) = 15− h0(L2,2(14)),

where the latter equality holds because quadrics passing through 2-fat points are cones with such points in the
vertex. Now, it is immediate to see that dimσ3(X) = 13 instead of 14.
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The latter example was actually proved to be the only case among products of P1’s.

Theorem 4.3.4 ([CGG11]). The Segre variety ν1(P1) of n copies of P1 is never s-defective, unless (n, s) = (4, 3).

4.4. On defectiveness of Segre-Veronese varieties. In [AOP09], a classification of defective Segre varieties
is done up to the 6-th secant variety. In general, there is a list of defective cases, see [AOP09].

• n = (1, 1, 1, 1) and s = 3 (Example 4.3.3);
• n = (2, 2, 2) and s = 4;
• n = (2, 3, 3) and s = 5;
• n = (2, n, n) with n ∈ 2N and s = 3n

2
+ 1;

• n = (1, 1, n, n) and s = 2n+ 1;
• the unbalanced cases, i.e., if n = (n1, . . . , nm, n̄) with n̄ >

∏
i(ni + 1)−

∑
i ni and

∏
i(ni + 1)−

∑
i ni <

s ≤ min{n,
∏

i(ni + 1)− 1}.

Despite the effort, no other defective cases of Segre varieties have been found and it is common belief that these
are the only ones. The difficulty in trying to prove that these are the only ones is in finding a winning multiple-
induction strategy (on degrees and dimensions), but, even more, in handling the base cases whose proof requires
strategies that avoid all defective cases. For example, in the proof of Alexander-Hirschowitz Theorem the case of
cubics was particularly complicated and that is why different degeneration techniques have been proposed since
then, see Remark 4.1.10.

A similar story holds also for Segre-Veronese varieties. In particular, it has bee considered the case of two factors.
Indeed, a list of defective cases for ν(d,e)(Pm × Pn) is known, see [AB13]. However, all the known defective cases
are such that either d ≤ 2 or e ≤ 2. If d ≥ 3 and e ≥ 3, Abo and Brambilla gave an inductive proof that
there are no defective cases assuming that there are none in the base cases {(3, 3), (3, 4), (4, 4)}. The latter cases
were recently solved in [GO22] by using a degeneration technique, which dates back to [Eva97], and consists in
collapsing m+ n+ 1 of the general 2-fat base points to have the same support.

Theorem 4.4.1 ([AB13]+[GO22]). If d ≥ 3 and e ≥ 3 then ν(d,e)(Pm × Pn) is non defective.

The (1, e) and (2, e) cases are open, in general. See [AB13] for the list of known cases. Recall that the (1, e) case
is particularly interesting because related to the study of simultaneous ranks, see Remark 1.1.12.

Lecture V

In the previous lectures, we considered the problem of computing the general rank. We want now to address the
problem of studying decompositions of given points. Once again we start by considering the most studied case
of Waring rank of homogeneous polynomials.

Remark 5.0.2. It is worth to underline that the computation of ranks of special forms is a very complicated
task. In particular, in [HL13],it was proved that the computation of the tensor rank is an NP-hard problem and
an analogous result for symmetric rank can be found in [Shi16].

5.1. Apolarity Lemma. We consider the standard graded polynomial rings S = k[x0, . . . , xn] =
⊕

d Sd and
R = k[y0, . . . , yn] =

⊕
d Td.

Definition 5.1.1 (Apolarity action). We define the apolar action of R on S by partial derivatives. I.e., the
extension by linearity of the following relation between monomials:

yβ ◦ xα =

{
β!

(α−β)!
xα−β if αi ≥ βi, ∀i;

0 otherwise.

Here we use the usual notations where, for any α = (α0, . . . , αn), xα = xα0
0 · · ·xαn

n and α! = α0! · · ·αn!.

Remark 5.1.2. The definition of the apolar action could have been done also over fields of finite characteristic.
In that case however, we would need to consider S to be a divided powers ring and we would have considered the
simple contraction. E.g., if x[α] = 1

α!
xα then yβ ◦ x[α] = x[α−β]. See [IK99].

Remark 5.1.3. The apolar action defines a k-bilinear non-degenerate pairing

(5.14) Rd × Sd → k, (g, f) 7→ g ◦ f.
Moreover, if f = ℓd = (p0x0 + . . .+ pnxn)d ∈ Sd and g ∈ Rd, then

(5.15) g ◦ ℓd ∝ g(p), where p = (p0 : . . . : pn).
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Therefore,

f ∈ ⟨ℓd1, . . . , ℓds⟩ if and only if {g ∈ Rd : g ◦ ℓdi = 0, ∀i = 1, . . . , s} ⊆ {g ∈ Rd : g ◦ f = 0}.

One direction follows directly by (5.15). Viceversa, if {g ∈ Rd : g◦ℓdi = 0, ∀i = 1, . . . , s} ⊆ {g ∈ Rd : g◦f = 0}
then, by non-degenericity of the bilinear pairing, the orthogonal spaces are such that

{g ∈ Rd : g ◦ ℓdi = 0, ∀i = 1, . . . , s}⊥ ⊃ {g ∈ Rd : g ◦ f = 0}⊥.

The right-hand-side is simply f while the left-hand-side is exactly the linear span of ⟨ℓd1, . . . , ℓds⟩.

Definition 5.1.4. Given f ∈ Sd, the apolar ideal of f is the annihilator of f with respect to the apolar action.
I.e.,

Ann(f) = {g ∈ R : g ◦ f = 0}.

Remark 5.1.5. From the bilinear pairing (5.14), the apolar ideal of a given homogenous polynomial f ∈ Sd can
be computed by simple linear algebra degree-by-degree. For any 1 ≤ i ≤ d, the catalecticant map of f is

cati(f) : Ri → Sd−i, g 7→ g ◦ f.

Hence, (Ann(f))i = ker cati(f).

Lemma 5.1.6 (Apolarity Lemma). Let f ∈ Sd and Z = {p1, . . . , ps} be a set of points in Pn. The following are
equivalent:

(1) f ∈ ⟨ℓd1, . . . , ℓds⟩;
(2) I(Z) ⊆ Ann(f).

Proof. From Remark 5.1.3, we just need to prove that I(Z)d ⊆ Ann(f) only if I(Z) ⊆ Ann(f). Let g ∈ I(Z)e. If
e > d, then clearly g ∈ Ann(f). Let e ≤ d. Then, Rd−eg ⊆ I(Z)d. By assumption, yαg ◦ f = 0 for all α ∈ Nn+1

with |α| = d− e. By non-degenericity of the pairing, we must have g ◦ f = 0. □

Remark 5.1.7. The apolarity lemma can be rephrased in a more general way by considering 0-dimensional
schemes which are not reduced. Let f ∈ Sd and Z ⊆ Pn a 0-dimensional scheme. The following are equivalent:

• f ∈ ⟨νd(Z)⟩;
• I(Z) ⊆ Ann(f).

Moreover, the lemma can be extended to any toric variety by considering a similar apolar action in terms of the
Cox ring of the variety. See [GRV18, Ga l23].

Remark 5.1.8. Given a homogeneous ideal I ⊂ S = k[x0, . . . , xn], we consider the Hilbert function

HFS/I(i) = dimSi − dim Ii.

Given a 0-dimensional scheme Z ⊂ Pn with defining ideal I(Z) ⊂ S, HFZ(i) = HFS/I(Z)(i) = dimSi−dim I(Z)i.
Recall that the Hilbert function of a 0-dimensional scheme in projective space is strictly increasing until it reaches
the degree of the scheme and then it stabilizes. See [Chi19, Lemma 2.16] for properties of Hilbert functions of
sets of points. It naturally follows that, if Z is a scheme of reduced points computing the rank of f ∈ Rd, then

wrk(f) = #(Z) ≥ HFZ(i) ≥ HFR/Ann(f)(i), for all i ≥ 0.

Example 5.1.9. Consider the monomial m = x0x
d−1
1 . The apolar ideal is given by Ann(m) = (y20 , y

d
1). A set

of reduced points in P1 is defined by a completely reducible polynomial. For any degree 2 ≤ j ≤ d − 1, every
polynomial in Ann(m) is divisible by y20 and, therefore, it is not completely reducible. Therefore, wrk(m) ≥ d.
On the other hand,the general polynomial y20g − yd1 has distinct roots and, therefore, corresponds to a Waring
decomposition of m. For example, in the case d = 2, the decomposition (1.5) of x0x

2
1 corresponds to the apolar

ideal (y20y1 − y31). Hence, wrk(m) = d.

Remark 5.1.10 (Catalecticant method). An algorithm to compute the rank of a given f ∈ Sd goes as follows.

(1) Compute the catalecticant matrix cat⌈d/2⌉(f).
(2) Compute the kernel of K = ker cat⌈d/2⌉(f).
(3) Let Z be the zero-set of K.

(a) If Z is not a finite set of points, then the algorithm fails.
(b) If Z = {ℓ1, . . . , ℓr} is a reduced set of points, then wrk(f) = r and by linear algebra we can

compute λ1, . . . , λr such that f =
∑r

i=1 λiℓ
d
i .



22 ALESSANDRO ONETO

It is immediate to see that the quotient algebra Af = R/Ann(f) is artinian, i.e., a finite dimensional k-vector
space: indeed, for any d > deg(f) we have Rd = (Ann(f))d. Moreover, as a consequence of the bilinear pairing
(5.14), it is also possibile to show that the Hilbert function of Af is symmetric, see e.g. [Ger96, Proposition
8.6]. In other words, Af is an artinian Gorenstein algebra of socle degree d. It is actually a celebrated result of
Macaulay that this is a complete characterization.

Theorem 5.1.11 (Macaulay’s classification of artinian Gorenstein graded algebras, see [Ger96, Theorem 8.7]).
Let A be a graded artinian Gorenstein algebra with socle degree d. Then, there exists a degree-d homogeneous
polynomial f ∈ k[x0, . . . , xn] such that A ∼= R/Ann(f).

5.2. Sylvester’s Algorithm for binary forms. The Apolarity Lemma gives us an algorithm to compute
Waring ranks of binary forms. This method goes back to Sylvester [Syl51].

In the case of binary forms, the apolar ideal has a very complete characterization. Let S = k[x0, x1].

Lemma 5.2.1. Let f ∈ Sd be a binary form. Then, Ann(f) = (g1, g2) with deg(g1) + deg(g2) = deg(f) + 2.

Proof. In codimension two, it is well-known that being Gorenstein is equivalent to being a complete intersection
[Ser60]. In particular, if f is a binary form, from Macaulay’s Theorem, we have that Ann(f) is a complete
intersection. Since Af has socle degree equal to d and the Hilbert function of Af is symmetric, see [Ger96,
Proposition 8.6], it is immediate to deduce that Ann(f) = (g1, g2) with deg(g1) + deg(g2) = deg(f) + 2. □

Therefore, we have the following result which gives also an explicit algorithm to compute the rank (and a Waring
decomposition) of any binary form f ∈ Sd.

Theorem 5.2.2. Let f ∈ Sd be a binary form such that Ann(f) = (g1, g2). Assume deg(g1) ≤ deg(g2). Then,
the Waring rank of f is:

• if g1 is square free, i.e., it has not multiple roots, then wrk(f) = deg(g1);
• otherwise, wrk(f) = deg(g2).

Proof. By Apolarity Lemma, it follows directly from Lemma 5.2.1. □

Remark 5.2.3 (Sylvester’s algorithm for binary forms). Let f ∈ Sd be a binary form.

(1) Set r = 1.
(2) Compute the catalecticant matrix catr(f).

(a) If catr(f) is of maximal rank, then substitute r = r + 1 and come back to (2).
(b) If catr(f) is not of maximal rank, take a random element g ∈ ker catr(f) and go to (3).

(3) Compute the roots of g.
(a) If g has distinct roots {ℓ1, . . . , ℓr}, then wrk(f) = deg(g) and go to (4).
(b) If g has multiple roots, set r = d+2−deg(g) and pick a random element of g′ ∈ ker catr(f). Then,

wrk(f) = deg(g′). Let {ℓ1, . . . , ℓr} the distinct roots of g′ and got to (4).
(4) By linear algebra, compute λ1, . . . , λr such that f =

∑
i λiℓ

d
i .

Theorem 5.2.2 was improved to a complete stratification of the space of degree-d binary forms with respect to
their ranks [CS11]. Recall the following classical result on the ideals of secants of Rational Normal Curves.

Proposition 5.2.4 ([Har, Theorem 9.7]). Let Cd = νd(P1) be a Rational Normal Curve of Pd = P(Sd). Let

{z0, . . . , zd} be the coordinates on Pd. I.e., the generic element of Sd is
∑d

i=0

(
d
i

)
zix

d−i
0 xi1. For r ≤ min{s, d− s},

the r-th secant variety is the rank-r determinantal variety of the catalecticant matrix

(5.16) cats(f) =


z0 z1 · · · zd−s

z1 z2 · · · zd−s+1

...
...

. . .
...

zs zs+1 · · · zd

 .

Assume that f ∈ σr(Cd) ∖ σr−1(Cd) with Ann(f) = (g1, g2), say deg(g1) ≤ deg(g2). If f ∈ σr(Cd) ∖ σr−1(Cd),
then catr−1(f) is maximal rank, while catr(f) is not. In particular, we have that deg(g1) = r and, therefore,
deg(g2) = d+ 2− r. Now, by Theorem 5.2.2, we get that either wrk(f) = r or wrk(f) = d+ 2− r.
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Theorem 5.2.5 ([CS11]). Let Cd = νd(P1) be the rational normal curve of Pd = P(Sd). Then, for 2 ≤ s ≤
⌈
d+1
2

⌉
,

we have

σs(Cd) ∖ σs−1(Cd) = σs,s ∪ σs,d−s+2

where σs,i = {f ∈ Sd : f ∈ σs(Cd), wrk(f) = i}.

After having computed the rank of a form, it is interesting to study how many Waring decomposition we have.
The space of Waring decompositions of a given form of rank r can be regarded as the fiber of the projection from
the abstract r-th secant variety, see Remark 1.1.3.

Definition 5.2.6. Let f ∈ Sd be any homogeneous polynomials of degree d. Let r = wrk(f). Then, the
Varieties of Sums of Powers (VSP) of f is

VSPr(f) = {(ℓ1, . . . , ℓr) ∈ P(S1)×r : f ∈ ⟨ℓd1, . . . , ℓdr⟩}.

The VSPr(f) can also be regarded as a subvariety of the Hilbert scheme of r points in Pn. We refer to [RS00]
for definitions and the computation of VSP’s in several interesting cases.

Once again, in the case of binary forms the answer follows immediately from Theorem 5.2.2.

Proposition 5.2.7. Let f ∈ Sd be a degree-d binary form such that Ann(f) = (g1, g2) with deg(g1) ≤ deg(g2).
Then:

(1) if wrk(f) <
⌈
d+1
2

⌉
, then there is a unique decomposition, i.e., VSPr(f) is a point;

(2) if wrk(f) ≥
⌈
d+1
2

⌉
, then VSPr(f) ∼= P(Sdeg(g2)−deg(g1)).

Proof. Let Ann(f) = (g1, g2) with deg(g1) ≤ deg(g2). If r = wrk(f) <
⌈
d+1
2

⌉
, then, by Theorem 5.2.2, it means

that r = deg(g1) <
⌈
d+1
2

⌉
≤ deg(g2) and g1 is the unique square-free form of degree r. In particular, there is a

unique set of r points apolar to f . Otherwise, r = wrk(f) = deg(g2) and deg(g1) = d+ 2− r. Moreover, g1 is not
square-free and, in particular, there are no square-free forms in f⊥ of degree strictly smaller than d + 2− r. In
degree r, we can consider we have the linear space {g1h+g2 : deg(h) = deg(g2)−deg(g1)} ∼= P(Sdeg(g2)−deg(g1)).
The general form g1h+ g2 is reducible and, in particular, it corresponds to a Waring decomposition of f , i.e., it
corresponds to a point of the varieties of sums of powers of f . □

Remark 5.2.8. As we have seen, the case of binary forms is completely understood by apolarity theory and
Sylvester’s catalecticant method. As the reader might expect, with higher number of variables more tools need
to be exploited. A very useful algebro-geometric tool is liaison theory, that in recent literature proved to be very
efficient to understand Waring decompositions of ternary and quaternary forms. This direction would be worth
an additional lecture, so, for now, we just refer to the literature. Roughly speaking, liaison theory studies the
algebro-geometric properties of two schemes, which are said to be linked, whose union is a special schemes, such
as a complete intersection or arithmetically Gorenstein, see [PS74, Mig98]. This tool can be used to construct
examples of low-dimensional varieties with interesting properties as a link of a simpler one and, at the same time,
it can be used to study general objects by linking them to special ones. In the case of Waring decompositions,
by Apolarity Lemma, liaison theory is used over sets of reduced points. Liaison theory is quite well undertood
for schemes in codimension two and, for this reason, this approach allows to give very good insights on Waring
decompositions of ternary forms, see [Mig98, Chapter 6]. For example, it can be used to construct a second Waring
decomposition whose corresponding set of points is linked to a given one. This idea can be exploited to deduce
identifiability criteria, see for example [ACV18, Bal18, ACM19, AC20, AC22] (for definition of identifiability, see
Remark 2.4.6); construct forms with special Waring decompositions, see for example [ACO23]; provide a fine
stratifications of the forms of given rank by the algebro-geometric properties of their decompositions, see for
example [CO23].

5.3. Waring rank of monomials. We see now how to use the apolarity lemma to compute the rank of mono-
mials. The following formula was proved by Carlini, Catalisano and Geramita [CCG12]. We recall also the proof
because it can provide a nice algebraic strategy to compute lower bounds on the Waring rank of a given form
and which is, in general, a very difficult task.

Theorem 5.3.1 ([CCG12]). Let 1 ≤ a0 ≤ . . . ≤ an. Let m = xa0
0 · · ·xan

n ∈ Sd be a degree-d monomial. Then,

wrk(m) =
1

a0 + 1

n∏
i=0

(ai + 1).
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Proof. The apolar ideal of m is Ann(m) = (ya0+1
0 , . . . , yan+1

n ). The ideal (ya1+1
1 − ya1+1

0 , . . . , yan+1
n − yan+1

0 )
defines a set of points of cardinality 1

a0+1

∏n
i=0(ai + 1). Hence, wrk(m) ≤ 1

a0+1

∏n
i=0(ai + 1).

We prove the opposite inequality. Let Z be a set of points which computes the rank of m. Let Z′ ⊆ Z be the
subset of points that do not have support on the hyperplane {y0 = 0}. In particular, I(Z′) = I(Z) : (y0). Since
the Hilbert function of a set of points is strictly increasing until it eventually stabilizes at the cardinality, we get

wrk(m) = #(Z) ≥ #(Z′) = HFR/I(Z′)(t)

=

t∑
i=0

(
HFR/I(Z′)(i+ 1)−HFR/I(Z′)(i)

)
, for t≫ 0.(5.17)

Now, note that y0 is a non-zero-divisor for R/I(Z′) since the support of Z′ is disjoint from {y0 = 0}. In particular,
the multiplication by y0 induces the exact sequence

0→ [R/I(Z′)]i
·y0−−→ [R/I(Z′)]i+1 → [R/(I(Z′) + (y0))]i+1 → 0.

Hence, continuing the chain in (5.17), we get that

t∑
i=0

(
HFR/I(Z′)(i+ 1)−HFR/I(Z′)(i)

)
=

t∑
i=0

HFR/(I(Z′)+(y0))

≥
t∑

i=0

HFR/(Ann(m):(y0)+(y0)),

where the latter inequality follows from I(Z′) + (y0) = I(Z) : (y0) + (y0) ⊆ Ann(m) : (y0) + (y0). Now, it is a
direct computation that

Ann(m) : (y0) + (y0) = (y0, y
a1+1
1 , . . . , yan+1

n )

and that, for t≫ 0,

t∑
i=0

HFR/(Ann(m):(y0)+(y0)) = dim[R/(Ann(m) : (y0) + (y0))] =
1

a0 + 1

n∏
i=0

(ai + 1).

This concludes the proof. □

In [BBT13], Buczynska, Buczynski and Teitler study the ideal I(Z) ∩ (x0) rather then I(Z) : (x0) + (x0) as in
[CCG12]. As a result, they characterize all minimal Waring decompositions of monomials.

Theorem 5.3.2. [BBT13] Let m = xa0
0 · · ·xan

n with a0 ≤ . . . ≤ am. If Z is an apolar set of points which
computes the Waring rank of m, then I(Z) is a complete intersection of degrees (a1 + 1, . . . , an + 1).

Theorem 5.3.3. [BBT13] Let m = xa0
0 · · ·xan

n with a0 ≤ . . . ≤ am. Let {Ha1+1,...,an+1(i)}i≥0 be the Hilbert
function of a complete intersection of degrees (a1 +1, . . . , an +1). Let r = 1

a0+1

∏n
i=0(ai +1). Then, the VSPr(m)

is irreducible and

dim VSPr(m) =

n∑
i=1

Ha1+1,...,an+1(ai − a0).

Remark 5.3.4. Note that the set Z′ constructed in the proof of Theorem 5.3.1 is forced to coincide with Z
which was chosen as an arbitrary set of points computing the rank of m. In particular, the proof tells us even
more about the Waring decompositions of the monomial. Indeed, we deduce that all sets of points computing
the Waring rank of the monomial m must have support away from {y0 = 0}. In [CCO17], the set of linear forms
that cannot appear in a minimal Waring decomposition of a given form f ∈ Sd is called forbidden locus of f ,
denoted by Ff . The latter observation is rephrased as follows in [CCO17, Theorem 3.3]. If m = xa0

0 · · ·xan
n with

a0 = . . . = am < am+1 ≤ . . . ≤ an, then

Fm = {y0 = . . . = ym = 0}.
In [CCO17], forbidden loci of other families of polynomials have been studied. It might be interesting to underline
that in all considered cases the forbidden locus was always non-empty, even if it could be as small as possible:
the maximal-rank ternary cubic of rank five, which correspond geometrically to the union of a smooth conic and
a tangent line, has only one forbidden point which, interestingly enough, corresponds exactly to the tangency
point. This observation rises a curious question: is it true that the forbidden locus of any form is non-empty?

Remark 5.3.5. The strategy of the proof of Theorem 5.3.1 has been exploited further to find efficient lower
bounds on the Waring rank of homogeneous polynomials in [CCC+18]. In particular, a form f ∈ Sd is said to be
e-computable if there exsists an ideal I ⊂ R and a form t ∈ Ie such that

wrk(f) =
1

e

∞∑
i=0

HFR/(Ann(f):I+(t))(i).
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The proof of Theorem 5.3.1 tells us that monomials are always 1-computable. It is worth mentioning that there
exists forms that can be 2-computable, but not 1-computable; see [CCC+18, Example 4.15 and Example 4.23].

5.4. Border rank and cactus rank. By definition, a point p ∈ Pn has X-rank equal to r if there exists a
0-dimensional reduced scheme Z ⊆ X of length r such that p ∈ ⟨Z⟩. Similarly, it has border X-rank equal
to r if there exists a one-parameter family of 0-dimensional reduced schemes Zt ⊆ X, with t ∈ (0, 1] of length
r such that p ∈ limt→0⟨Zt⟩. Näıvely, one might expect that the latter is equivalent to say that there exists a

0-dimensional scheme Z of length r which is the smooth limit of reduced schemes. That is not true: indeed, the
limit of the linear spaces ⟨Zt⟩ might be different than the linear span of limt→0 Zt.

Definition 5.4.1. Let X be a projective variety embedded in Pn. For every point p ∈ Pn, the cactus X-rank
of p is the smallest length of a 0-dimensional scheme on X whose linear span contains p. I.e.,

crkX(p) = min{r : ∃Z ⊆ X, length(Z) = r, dim(Z) = 0 s.t. p ∈ ⟨Z⟩}.

Definition 5.4.2. Let X be a projective variety embedded in Pn. For every point p ∈ Pn, the smoothable
X-rank of p is the smallest length of a 0-dimensional smoothable scheme on X whose linear span contains p.
I.e.,

srkX(p) = min
{
r : ∃{Zt}t∈(0,1] ⊆ X,Zt set of r points s.t. p ∈ ⟨lim

t→0
Zt⟩
}
.

For all points p ∈ Pn, the following relations hold:

(5.18) rkX(p) ≤ srkX(p) ≤ rkX(p);

(5.19) crkX(p) ≤ srkX(p) ≤ rkX(p).

However, cactus and border ranks are not comparable. The cactus rank can be strictly smaller than the border
rank [BR13], but also the other way around [BB15].

5.5. Some example of wild forms. Consider the latter definitions with respect to Veronese varieties.

In [BB15], Buczynska and Buczynski call wild form a homogeneous polynomial f ∈ Sd such that rk(f) < srk(f),
while they call tame the case rk(f) = srk(f).

Definition 5.5.1. Let f ∈ Sd. We say that f is concise if (Ann(f))1 = 0. Otherwise, we say that f has m
essential variables if HFAf (1) = m.

Remark 5.5.2. As mentioned in Remark 5.1.7, if Z is a 0-dimensional scheme, then I(Z) ⊆ Ann(f) if and only
if f ∈ ⟨νd(Z)⟩ ∼= Pr−1 where r ≤ len(Z). Therefore, it immediately follows that all ranks crk(f), srk(f), rk(f) are
bounded from below by the number of essential variables of f .

Example 5.5.3 (Quadrics are tame). Let f ∈ S2 in n essential variables. Then, we know that wrk(f) = n. By
(5.18) and (5.19), rk(f), srk(f), crk(f) are at most n = wrk(f). By Remark 5.5.2, we know that the essential
variables are a lower bound, therefore rk(f) = srk(f) = crk(f) = wrk(f) = n.

Example 5.5.4 (Binary forms are tame). It follows from Theorem 5.2.2, and the fact that every 0-dimensional
scheme in P1 is smoothable, that all binary forms are tame. Assume that Ann(f) = (g1, g2) with deg(g1) ≤
deg(g2). Then, rk(f), srk(f), crk(f) are bounded from below by the Hilbert function of Af whose maximal value
is indeed deg(g1). Viceversa, g1 defines a 0-dimensional scheme and then srk(f) = crk(f) = deg(g1). Moreover,
by Proposition 5.2.4, we also have rk(f) = deg(g1).

If Z ⊆ Pn is a 0-dimensional scheme of length r, then its Hilbert function stabilizes at latest at degree r− 1. The
latter occurs when the Hilbert function of Z has the slowest growth, namely when Z is collinear. Therefore, if
r ≤ d+ 1, then ⟨νd(Z)⟩ ∼= Pr−1, indeed recall that by Apolarity Lemma, dim⟨νd(Z)⟩ = HFZ(d)− 1.

Assume r ≤ d + 1. Let Hsm
r be the smoothable component of the Hilbert scheme of degree r 0-dimensional

schemes in Pn. Let φd : Hsm
r → Gr(r − 1,PN ) be the map sending a smoothable scheme of length r to the

(r − 1)-dimensional linear space ⟨νd(Z)⟩. Now, if I = PN ×Gr(r − 1,PN ) is the incidence variety and π1, π2 are
the two projections, then A = π1π

−1
2 (φd(Hsm

r )) is closed and irreducible because Hr is irreducible. The dense
part of the r-th secant variety σ◦

r (νd(Pn)) = {p : rkX(p) = r} is dense in A by construction. Hence, we can
conclude the following result, see [BGI11, Proposition 11] or [BB14, Proposition 2.5].

Theorem 5.5.5 ([BGI11, BB14]). Let f ∈ Sd. If rk(f) ≤ d+ 1, then rk(f) = srk(f).
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Example 5.5.6 (Ternary cubics are tame). By Theorem 3.3.2, we know that the first secant variety of the
Veronese variety in the space of ternary cubcis filling the ambient space is σ4(ν3(P2)). Hence, for any f ∈ S3 we
have rk(f) ≤ 4. Then, we directly apply Theorem 5.5.5.

Example 5.5.7 (Quaternary cubics are tame). In this case, by Alexander-Hirschowitz Theorem the general
rank for quaternary cubics is equal to 5. Then, cubics of border rank at most 4 are tame by Theorem 5.5.5. The
case of quaternary cubics of border rank 5 needs is treated separately by analysing the possible Hilbert functions
encountered, see [BB15, Section 3.6].

Example 5.5.8 (A wild cubic in five variables). In [BB15, Section 4], a first wild case is presented. That is

f = x20x2 + (x0 + x1)2x3 + x21x4 ∈ k[x0, . . . , x4].

The border rank of f is equal to 5 because

f = lim
t→0

1

t

[
1

3
(x0 + tx2)3 − 1

3
(x0 + x1 + tx3)3 − 1

12
(2x1 − tx4)3 − 1

9
(x0 − x1)3 +

1

9
(x+ 2x1)3

]
.

Assume that there exists a 0-dimensional scheme Z ⊂ P4 of length 5 apolar to f . Since f has five essential
variables, then

HFR/Ann(f) : 1 5 5 1 −;

This is a lower bound degree-by-degree for the Hilbert function of Z, since IZ ⊂ Ann(f), and the Hilbert function
of Z is bounded by above by the length of Z. Namely,

HFR/Ann(f)(2) ≤ HFR/IZ (2) ≤ 5 = HFR/Ann(f)(2).

Then, (IZ)2 = (Ann(f))2. Then, by explicitely computing the apolar ideal of f , it is possible to deduce a
contradiction to the fact that the ideal of Z should be saturated, see [BB15, Section 4].

The presence of wild forms makes very difficult the computation of border ranks of homogeneous polynomials.
We have to mention a very important recent contribution in this direction. Buczynska and Buczynski proved a
border version of Apolarity Lemma, see [BB21]. We recall it here just in the framework of Veronese varieties,
but it holds a general version for smooth toric varieties embedded via a complete linear system.

Let hr,n be the Hilbert function of r general points in Pn. Consider the multigraded Hilbert scheme Hilb
hr,n

Pn of

schemes with Hilbert function equal to hr,n, see [HS04]. There exists a unique component of Hilb
hr,n

Pn containing
ideals of r reduced points with the prescribed Hilbert function. This is called Slipr,n, see [BB21, Section 3].

Theorem 5.5.9 (Border Apolarity Lemma, [BB21, Theorem 3.15]). Let f ∈ Sd in n + 1 variables. Then, the
following are equivalent:

(1) rk(f) ≤ r;
(2) there exists an ideal I ∈ Slipr,n such that I ⊂ Ann(f).
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