Real aspects of the problem of rank-one approximation

Khazhgali Kozhasov (TU Braunschweig)

AGATES Kickoff Workshop, Warsaw, 19-23 September 2022

METAPROBLEM: approximate a "data"-tensor with a tensor from some "lower-dimensional" manifold/variety

METAPROBLEM: approximate a "data"-tensor with a tensor from some "lower-dimensional" manifold/variety (approximation model).

METAPROBLEM: approximate a "data"-tensor with a tensor from some "lower-dimensional" manifold/variety (approximation model).

Matrices (2D data):

METAPROBLEM: approximate a "data"-tensor with a tensor from some "lower-dimensional" manifold/variety (approximation model).

Matrices (2D data): efficient approaches based on SVD.

METAPROBLEM: approximate a "data"-tensor with a tensor from some "lower-dimensional" manifold/variety (approximation model).

Matrices (2*D* data): efficient approaches based on SVD. **Tensors** (3*D* and higher):

METAPROBLEM: approximate a "data"-tensor with a tensor from some "lower-dimensional" manifold/variety (approximation model).

Matrices (2*D* data): efficient approaches based on SVD. **Tensors** (3*D* and higher): Tucker format,

METAPROBLEM: approximate a "data"-tensor with a tensor from some "lower-dimensional" manifold/variety (approximation model).

Matrices (2*D* data): efficient approaches based on SVD. **Tensors** (3*D* and higher): Tucker format, CP model

METAPROBLEM: approximate a "data"-tensor with a tensor from some "lower-dimensional" manifold/variety (approximation model).

Matrices (2*D* data): efficient approaches based on SVD. **Tensors** (3*D* and higher): Tucker format, CP model

Applications:

METAPROBLEM: approximate a "data"-tensor with a tensor from some "lower-dimensional" manifold/variety (approximation model).

Matrices (2*D* data): efficient approaches based on SVD. **Tensors** (3*D* and higher): Tucker format, CP model

Applications: image/sound compression,

METAPROBLEM: approximate a "data"-tensor with a tensor from some "lower-dimensional" manifold/variety (approximation model).

Matrices (2*D* data): efficient approaches based on SVD. **Tensors** (3*D* and higher): Tucker format, CP model

Applications: image/sound compression, data classification,

METAPROBLEM: approximate a "data"-tensor with a tensor from some "lower-dimensional" manifold/variety (approximation model).

Matrices (2*D* data): efficient approaches based on SVD. **Tensors** (3*D* and higher): Tucker format, CP model

Applications: image/sound compression, data classification, noise elimination, etc.

Part 1. Rank-one approximations of general tensors

Framework and problem statement

$$\mathbb{R}^{\boldsymbol{n}} = \mathbb{R}^{n_1} \otimes \cdots \otimes \mathbb{R}^{n_d} = \left\{ \mathsf{T} = (t_{i_1 \dots i_d})_{i_j=1}^{n_j} : t_{i_1 \dots i_d} \in \mathbb{R} \right\}$$

$$\mathbb{R}^{\boldsymbol{n}} = \mathbb{R}^{n_1} \otimes \cdots \otimes \mathbb{R}^{n_d} = \left\{ \mathsf{T} = (t_{i_1 \dots i_d})_{i_j=1}^{n_j} : t_{i_1 \dots i_d} \in \mathbb{R} \right\}$$

The Segre variety of rank-one tensors:

$$\mathbb{R}^{\boldsymbol{n}} = \mathbb{R}^{n_1} \otimes \cdots \otimes \mathbb{R}^{n_d} = \left\{ \mathsf{T} = \left(t_{i_1 \dots i_d} \right)_{i_j=1}^{n_j} : t_{i_1 \dots i_d} \in \mathbb{R} \right\}$$

The Segre variety of rank-one tensors:

$$\mathcal{S}_{\boldsymbol{n}} = \left\{ \sigma \, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d = \left(\sigma \, \mathsf{x}_{i_1}^1 \dots \mathsf{x}_{i_d}^d \right)_{i_j=1}^{n_j} : \, \sigma \in \mathbb{R}, \; \mathsf{x}^j \in \mathbb{S}^{n_j-1} \right\}$$

$$\mathbb{R}^{\boldsymbol{n}} = \mathbb{R}^{n_1} \otimes \cdots \otimes \mathbb{R}^{n_d} = \left\{ \mathsf{T} = \left(t_{i_1 \dots i_d} \right)_{i_j=1}^{n_j} : t_{i_1 \dots i_d} \in \mathbb{R} \right\}$$

The Segre variety of rank-one tensors:

$$\mathcal{S}_{\boldsymbol{n}} = \left\{ \sigma \, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d = \left(\sigma \, \mathsf{x}_{i_1}^1 \dots \mathsf{x}_{i_d}^d \right)_{i_j=1}^{n_j} \, : \, \sigma \in \mathbb{R}, \; \mathsf{x}^j \in \mathbb{S}^{n_j-1} \right\}$$

The Frobenius product and norm:

$$\langle \mathsf{T},\mathsf{S} \rangle = \sum_{i_j=1}^{n_j} t_{i_1\dots i_d} s_{i_1\dots i_d}, \quad \|\mathsf{T}\| = \sqrt{\langle \mathsf{T},\mathsf{T} \rangle}$$

$$\mathbb{R}^{\boldsymbol{n}} = \mathbb{R}^{n_1} \otimes \cdots \otimes \mathbb{R}^{n_d} = \left\{ \mathsf{T} = \left(t_{i_1 \dots i_d}\right)_{i_j=1}^{n_j} : t_{i_1 \dots i_d} \in \mathbb{R} \right\}$$

The Segre variety of rank-one tensors:

$$\mathcal{S}_{\boldsymbol{n}} = \left\{ \sigma \, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d = \left(\sigma \, \mathsf{x}_{i_1}^1 \dots \mathsf{x}_{i_d}^d \right)_{i_j=1}^{n_j} \, : \, \sigma \in \mathbb{R}, \; \mathsf{x}^j \in \mathbb{S}^{n_j-1} \right\}$$

The Frobenius product and norm:

$$\langle \mathsf{T},\mathsf{S} \rangle = \sum_{i_j=1}^{n_j} t_{i_1...i_d} s_{i_1...i_d}, \quad \|\mathsf{T}\| = \sqrt{\langle \mathsf{T},\mathsf{T} \rangle}$$

Rank-one approximation problem

Given $\mathsf{T} \in \mathbb{R}^n$

$$\mathbb{R}^{\boldsymbol{n}} = \mathbb{R}^{n_1} \otimes \cdots \otimes \mathbb{R}^{n_d} = \left\{ \mathsf{T} = \left(t_{i_1 \dots i_d}\right)_{i_j=1}^{n_j} : t_{i_1 \dots i_d} \in \mathbb{R} \right\}$$

The Segre variety of rank-one tensors:

$$\mathcal{S}_{\boldsymbol{n}} = \left\{ \sigma \, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d = \left(\sigma \, \mathsf{x}_{i_1}^1 \dots \mathsf{x}_{i_d}^d \right)_{i_j=1}^{n_j} \, : \, \sigma \in \mathbb{R}, \; \mathsf{x}^j \in \mathbb{S}^{n_j-1} \right\}$$

The Frobenius product and norm:

$$\langle \mathsf{T},\mathsf{S} \rangle = \sum_{i_j=1}^{n_j} t_{i_1...i_d} s_{i_1...i_d}, \quad \|\mathsf{T}\| = \sqrt{\langle \mathsf{T},\mathsf{T} \rangle}$$

Rank-one approximation problem

Given $T \in \mathbb{R}^n$ find a best rank-one approximation $T^* \in S_n$ to it,

$$\mathbb{R}^{\boldsymbol{n}} = \mathbb{R}^{n_1} \otimes \cdots \otimes \mathbb{R}^{n_d} = \left\{ \mathsf{T} = \left(t_{i_1 \dots i_d}\right)_{i_j=1}^{n_j} : t_{i_1 \dots i_d} \in \mathbb{R} \right\}$$

The Segre variety of rank-one tensors:

$$\mathcal{S}_{\boldsymbol{n}} = \left\{ \sigma \, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d = \left(\sigma \, \mathsf{x}_{i_1}^1 \dots \mathsf{x}_{i_d}^d \right)_{i_j=1}^{n_j} \, : \, \sigma \in \mathbb{R}, \; \mathsf{x}^j \in \mathbb{S}^{n_j-1} \right\}$$

The Frobenius product and norm:

$$\langle \mathsf{T},\mathsf{S} \rangle = \sum_{i_j=1}^{n_j} t_{i_1...i_d} s_{i_1...i_d}, \quad \|\mathsf{T}\| = \sqrt{\langle \mathsf{T},\mathsf{T} \rangle}$$

Rank-one approximation problem

Given $T \in \mathbb{R}^n$ find a best rank-one approximation $T^* \in S_n$ to it,

$$\|\mathsf{T}-\mathsf{T}^*\| = \min_{\mathsf{S}\in\mathcal{S}_n}\|\mathsf{T}-\mathsf{S}\|.$$

$$\mathbb{R}^{\boldsymbol{n}} = \mathbb{R}^{n_1} \otimes \cdots \otimes \mathbb{R}^{n_d} = \left\{ \mathsf{T} = \left(t_{i_1 \dots i_d}\right)_{i_j=1}^{n_j} : t_{i_1 \dots i_d} \in \mathbb{R} \right\}$$

The Segre variety of rank-one tensors:

$$\mathcal{S}_{\boldsymbol{n}} = \left\{ \sigma \, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d = \left(\sigma \, \mathsf{x}_{i_1}^1 \dots \mathsf{x}_{i_d}^d \right)_{i_j=1}^{n_j} \, : \, \sigma \in \mathbb{R}, \; \mathsf{x}^j \in \mathbb{S}^{n_j-1} \right\}$$

The Frobenius product and norm:

$$\langle \mathsf{T},\mathsf{S} \rangle = \sum_{i_j=1}^{n_j} t_{i_1\dots i_d} s_{i_1\dots i_d}, \quad \|\mathsf{T}\| = \sqrt{\langle \mathsf{T},\mathsf{T} \rangle}$$

Rank-one approximation problem

Given $T \in \mathbb{R}^n$ find a best rank-one approximation $T^* \in S_n$ to it,

$$\|T - T^*\| = \min_{S \in S_n} \|T - S\|.$$

Remark: NP-hard to decide if T^* is a solution, already for d = 3.

Singular Value Decomposition (SVD):

Singular Value Decomposition (SVD):

 $\mathsf{T} = \mathsf{U}\Sigma\mathsf{V}^{\mathsf{T}}, \quad \mathsf{U} \in O(n_1), \ \mathsf{V} \in O(n_2), \ \Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_{\min(n_1, n_2)})$

Singular Value Decomposition (SVD):

 $\mathsf{T} = \mathsf{U}\Sigma\mathsf{V}^{\mathsf{T}}, \quad \mathsf{U} \in O(n_1), \ \mathsf{V} \in O(n_2), \ \Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_{\min(n_1, n_2)})$

Left / Right singular vectors (columns of U / V): eigenvectors of $TT^{T} = U\Sigma\Sigma^{T}U^{T} : \mathbb{R}^{n_{1}} \to \mathbb{R}^{n_{1}} / T^{T}T = V\Sigma^{T}\Sigma V^{T} : \mathbb{R}^{n_{2}} \to \mathbb{R}^{n_{2}}.$

Singular Value Decomposition (SVD):

 $\mathsf{T} = \mathsf{U}\Sigma\mathsf{V}^{\mathsf{T}}, \quad \mathsf{U} \in O(n_1), \ \mathsf{V} \in O(n_2), \ \Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_{\min(n_1, n_2)})$

Left / Right singular vectors (columns of U / V): eigenvectors of $TT^{T} = U\Sigma\Sigma^{T}U^{T} : \mathbb{R}^{n_{1}} \to \mathbb{R}^{n_{1}} / T^{T}T = V\Sigma^{T}\Sigma V^{T} : \mathbb{R}^{n_{2}} \to \mathbb{R}^{n_{2}}$. Singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min(n_{1},n_{2})} \geq 0$:

Singular Value Decomposition (SVD):

 $\mathsf{T} = \mathsf{U}\Sigma\mathsf{V}^{\mathsf{T}}, \quad \mathsf{U} \in O(n_1), \ \mathsf{V} \in O(n_2), \ \Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_{\min(n_1, n_2)})$

Left / Right singular vectors (columns of U / V): eigenvectors of $TT^{T} = U\Sigma\Sigma^{T}U^{T} : \mathbb{R}^{n_{1}} \to \mathbb{R}^{n_{1}} / T^{T}T = V\Sigma^{T}\Sigma V^{T} : \mathbb{R}^{n_{2}} \to \mathbb{R}^{n_{2}}$. Singular values $\sigma_{1} \ge \sigma_{2} \ge \cdots \ge \sigma_{\min(n_{1},n_{2})} \ge 0$: square roots of (min(n_{1}, n_{2}) largest) eigenvalues of TT^{T} (equivalently, of $T^{T}T$).

Singular Value Decomposition (SVD):

 $\mathsf{T} = \mathsf{U} \mathsf{\Sigma} \mathsf{V}^{\mathsf{T}}, \quad \mathsf{U} \in \mathcal{O}(n_1), \ \mathsf{V} \in \mathcal{O}(n_2), \ \mathsf{\Sigma} = \mathrm{diag}\left(\sigma_1, \ldots, \sigma_{\min(n_1, n_2)}\right)$

Left / Right singular vectors (columns of U / V): eigenvectors of $TT^{T} = U\Sigma\Sigma^{T}U^{T} : \mathbb{R}^{n_{1}} \to \mathbb{R}^{n_{1}} / T^{T}T = V\Sigma^{T}\Sigma V^{T} : \mathbb{R}^{n_{2}} \to \mathbb{R}^{n_{2}}$. Singular values $\sigma_{1} \ge \sigma_{2} \ge \cdots \ge \sigma_{\min(n_{1},n_{2})} \ge 0$: square roots of (min(n_{1}, n_{2}) largest) eigenvalues of TT^{T} (equivalently, of $T^{T}T$). Theorem (Eckart and Young, 1936)

Singular Value Decomposition (SVD):

 $\mathsf{T} = \mathsf{U}\Sigma\mathsf{V}^{\mathsf{T}}, \quad \mathsf{U} \in O(n_1), \ \mathsf{V} \in O(n_2), \ \Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_{\min(n_1, n_2)})$

Left / Right singular vectors (columns of U / V): eigenvectors of $TT^{T} = U\Sigma\Sigma^{T}U^{T} : \mathbb{R}^{n_{1}} \to \mathbb{R}^{n_{1}} / T^{T}T = V\Sigma^{T}\Sigma V^{T} : \mathbb{R}^{n_{2}} \to \mathbb{R}^{n_{2}}$. Singular values $\sigma_{1} \ge \sigma_{2} \ge \cdots \ge \sigma_{\min(n_{1},n_{2})} \ge 0$: square roots of (min(n_{1}, n_{2}) largest) eigenvalues of TT^{T} (equivalently, of $T^{T}T$). Theorem (Eckart and Young, 1936) A best rank-one approximation to a non-zero $T = U\Sigma V^{T}$ is given by

Singular Value Decomposition (SVD):

 $\mathsf{T} = \mathsf{U}\Sigma\mathsf{V}^{\mathsf{T}}, \quad \mathsf{U} \in O(n_1), \ \mathsf{V} \in O(n_2), \ \Sigma = \operatorname{diag}\left(\sigma_1, \ldots, \sigma_{\min(n_1, n_2)}\right)$

Left / Right singular vectors (columns of U / V): eigenvectors of $\mathsf{T}\mathsf{T}^{\mathsf{T}} = \mathsf{U}\mathsf{\Sigma}\mathsf{\Sigma}^{\mathsf{T}}\mathsf{U}^{\mathsf{T}} : \mathbb{R}^{n_1} \to \mathbb{R}^{n_1} / \mathsf{T}^{\mathsf{T}}\mathsf{T} = \mathsf{V}\mathsf{\Sigma}^{\mathsf{T}}\mathsf{\Sigma}\mathsf{V}^{\mathsf{T}} : \mathbb{R}^{n_2} \to \mathbb{R}^{n_2}.$ Singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min(n_1,n_2)} \geq 0$: square roots of $(\min(n_1, n_2) \text{ largest})$ eigenvalues of TT^T (equivalently, of T^TT). Theorem (Eckart and Young, 1936) A best rank-one approximation to a non-zero $T = U\Sigma V^T$ is given

by $T^* = U\Sigma^*V^T$, where $\Sigma^* = diag(\sigma_1, 0, \dots, 0)$.

Singular Value Decomposition (SVD):

 $\mathsf{T} = \mathsf{U}\Sigma\mathsf{V}^{\mathsf{T}}, \quad \mathsf{U} \in O(n_1), \ \mathsf{V} \in O(n_2), \ \Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_{\min(n_1, n_2)})$

Left / Right singular vectors (columns of U / V): eigenvectors of $TT^{T} = U\Sigma\Sigma^{T}U^{T} : \mathbb{R}^{n_{1}} \to \mathbb{R}^{n_{1}} / T^{T}T = V\Sigma^{T}\Sigma V^{T} : \mathbb{R}^{n_{2}} \to \mathbb{R}^{n_{2}}$. Singular values $\sigma_{1} \ge \sigma_{2} \ge \cdots \ge \sigma_{\min(n_{1},n_{2})} \ge 0$: square roots of (min(n_{1}, n_{2}) largest) eigenvalues of TT^{T} (equivalently, of $T^{T}T$). Theorem (Eckart and Young, 1936) A best rank-one approximation to a non-zero $T = U\Sigma V^{T}$ is given by $T^{*} = U\Sigma^{*}V^{T}$, where $\Sigma^{*} = \text{diag}(\sigma_{1}, 0, \dots, 0)$. Moreover,

$$\|\mathsf{T}-\mathsf{T}^*\| = \sqrt{\sigma_2^2 + \cdots + \sigma_{\min(n_1,n_2)}^2}$$

Singular Value Decomposition (SVD):

 $\mathsf{T} = \mathsf{U}\Sigma\mathsf{V}^{\mathsf{T}}, \quad \mathsf{U} \in O(n_1), \ \mathsf{V} \in O(n_2), \ \Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_{\min(n_1, n_2)})$

Left / Right singular vectors (columns of U / V): eigenvectors of $TT^{T} = U\Sigma\Sigma^{T}U^{T} : \mathbb{R}^{n_{1}} \to \mathbb{R}^{n_{1}} / T^{T}T = V\Sigma^{T}\Sigma V^{T} : \mathbb{R}^{n_{2}} \to \mathbb{R}^{n_{2}}$. Singular values $\sigma_{1} \ge \sigma_{2} \ge \cdots \ge \sigma_{\min(n_{1},n_{2})} \ge 0$: square roots of (min(n_{1}, n_{2}) largest) eigenvalues of TT^{T} (equivalently, of $T^{T}T$). Theorem (Eckart and Young, 1936) A best rank-one approximation to a non-zero $T = U\Sigma V^{T}$ is given by $T^{*} = U\Sigma^{*}V^{T}$, where $\Sigma^{*} = \text{diag}(\sigma_{1}, 0, \dots, 0)$. Moreover,

$$\|\mathsf{T}-\mathsf{T}^*\| = \sqrt{\sigma_2^2+\cdots+\sigma_{\min(n_1,n_2)}^2}$$

Mirsky, 1960:
Matrix case (d = 2)

Singular Value Decomposition (SVD):

 $\mathsf{T} = \mathsf{U}\Sigma\mathsf{V}^{\mathsf{T}}, \quad \mathsf{U} \in O(n_1), \ \mathsf{V} \in O(n_2), \ \Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_{\min(n_1, n_2)})$

Left / Right singular vectors (columns of U / V): eigenvectors of $TT^{T} = U\Sigma\Sigma^{T}U^{T} : \mathbb{R}^{n_{1}} \to \mathbb{R}^{n_{1}} / T^{T}T = V\Sigma^{T}\Sigma V^{T} : \mathbb{R}^{n_{2}} \to \mathbb{R}^{n_{2}}$. Singular values $\sigma_{1} \ge \sigma_{2} \ge \cdots \ge \sigma_{\min(n_{1},n_{2})} \ge 0$: square roots of (min(n_{1}, n_{2}) largest) eigenvalues of TT^{T} (equivalently, of $T^{T}T$). Theorem (Eckart and Young, 1936) A best rank-one approximation to a non-zero $T = U\Sigma V^{T}$ is given by $T^{*} = U\Sigma^{*}V^{T}$, where $\Sigma^{*} = \text{diag}(\sigma_{1}, 0, \dots, 0)$. Moreover,

$$\|\mathsf{T}-\mathsf{T}^*\| = \sqrt{\sigma_2^2 + \dots + \sigma_{\min(n_1,n_2)}^2}$$

Mirsky, 1960: T^{*} is a solution for a $O(n_1) \times O(n_2)$ -invariant norm.

A best rank-1 approximation to T

A best rank-1 approximation to T minimizes the (squared) distance

$$\begin{split} & \mathsf{dist}_\mathsf{T}:\mathcal{S}_{\boldsymbol{n}} \ \rightarrow \ \mathbb{R}, \\ \mathsf{S} \ = \ \sigma \, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d \ \mapsto \ \|\mathsf{T}-\mathsf{S}\|^2 \ = \ \|\mathsf{T}\|^2 - 2\sigma \langle \mathsf{T},\mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d \rangle + \sigma^2 \end{split}$$

A best rank-1 approximation to T minimizes the (squared) distance

$$\begin{split} & \text{dist}_{\mathsf{T}}:\mathcal{S}_{\boldsymbol{n}} \ \rightarrow \ \mathbb{R}, \\ \mathsf{S} \ = \ \sigma \, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d \ \mapsto \ \|\mathsf{T} - \mathsf{S}\|^2 \ = \ \|\mathsf{T}\|^2 - 2\sigma \langle \mathsf{T}, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d \rangle + \sigma^2 \end{split}$$

It is a critical point of dist_T,

A best rank-1 approximation to T minimizes the (squared) distance

$$\begin{split} & \mathsf{dist}_\mathsf{T}:\mathcal{S}_{\boldsymbol{n}} \ \rightarrow \ \mathbb{R}, \\ \mathsf{S} \ = \ \sigma \, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d \ \mapsto \ \|\mathsf{T}-\mathsf{S}\|^2 \ = \ \|\mathsf{T}\|^2 - 2\sigma \langle \mathsf{T},\mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d \rangle + \sigma^2 \end{split}$$

It is a critical point of $dist_T$, that is,

$$\begin{split} \nabla_{\mathsf{x}^{j}} \mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1}, \dots, \mathsf{x}^{d}) &= \sigma \, \mathsf{x}^{j}, \quad \text{where} \\ \mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1}, \dots, \mathsf{x}^{d}) &:= \langle \mathsf{T}, \mathsf{x}^{1} \otimes \dots \otimes \mathsf{x}^{d} \rangle \; = \; \sum_{i_{j}=1}^{n_{j}} t_{i_{1} \dots i_{d}} \mathsf{x}_{i_{1}}^{1} \dots \mathsf{x}_{i_{d}}^{d} \end{split}$$

A best rank-1 approximation to T minimizes the (squared) distance

$$\begin{split} & \mathsf{dist}_\mathsf{T}:\mathcal{S}_{\boldsymbol{n}} \ \rightarrow \ \mathbb{R}, \\ \mathsf{S} \ = \ \sigma \, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d \ \mapsto \ \|\mathsf{T} - \mathsf{S}\|^2 \ = \ \|\mathsf{T}\|^2 - 2\sigma \langle \mathsf{T}, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d \rangle + \sigma^2 \end{split}$$

It is a critical point of $dist_T$, that is,

$$\begin{split} \nabla_{\mathsf{x}^{j}}\mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1},\ldots,\mathsf{x}^{d}) &= \sigma \, \mathsf{x}^{j}, \quad \text{where} \\ \mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1},\ldots,\mathsf{x}^{d}) &:= \, \langle \mathsf{T},\mathsf{x}^{1}\otimes\cdots\otimes\mathsf{x}^{d} \rangle \;=\; \sum_{i_{j}=1}^{n_{j}} t_{i_{1}\ldots i_{d}} \mathsf{x}_{i_{1}}^{1}\ldots\mathsf{x}_{i_{d}}^{d} \end{split}$$

is a multi-linear form on $\mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_d}$ associated to the tensor T.

A best rank-1 approximation to T minimizes the (squared) distance

$$\begin{split} & \mathsf{dist}_\mathsf{T}:\mathcal{S}_{\boldsymbol{n}} \ \rightarrow \ \mathbb{R}, \\ \mathsf{S} \ = \ \sigma \, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d \ \mapsto \ \|\mathsf{T} - \mathsf{S}\|^2 \ = \ \|\mathsf{T}\|^2 - 2\sigma \langle \mathsf{T}, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d \rangle + \sigma^2 \end{split}$$

It is a critical point of $dist_T$, that is,

$$\begin{split} \nabla_{\mathsf{x}^{j}}\mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1},\ldots,\mathsf{x}^{d}) &= \sigma \, \mathsf{x}^{j}, \quad \text{where} \\ \mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1},\ldots,\mathsf{x}^{d}) &:= \, \langle \mathsf{T},\mathsf{x}^{1}\otimes\cdots\otimes\mathsf{x}^{d} \rangle \;=\; \sum_{i_{j}=1}^{n_{j}} t_{i_{1}\ldots i_{d}} \mathsf{x}_{i_{1}}^{1}\ldots\mathsf{x}_{i_{d}}^{d} \end{split}$$

is a multi-linear form on $\mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_d}$ associated to the tensor T. Critical points of dist_T are called critical rank-1 approximations.

A best rank-1 approximation to T minimizes the (squared) distance

$$\begin{split} & \mathsf{dist}_\mathsf{T}:\mathcal{S}_{\boldsymbol{n}} \ \rightarrow \ \mathbb{R}, \\ \mathsf{S} \ = \ \sigma \, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d \ \mapsto \ \|\mathsf{T} - \mathsf{S}\|^2 \ = \ \|\mathsf{T}\|^2 - 2\sigma \langle \mathsf{T}, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d \rangle + \sigma^2 \end{split}$$

It is a critical point of $dist_T$, that is,

$$\begin{split} \nabla_{\mathsf{x}^{j}}\mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1},\ldots,\mathsf{x}^{d}) &= \sigma \, \mathsf{x}^{j}, \quad \text{where} \\ \mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1},\ldots,\mathsf{x}^{d}) &:= \langle \mathsf{T},\mathsf{x}^{1}\otimes\cdots\otimes\mathsf{x}^{d} \rangle \;=\; \sum_{i_{j}=1}^{n_{j}} t_{i_{1}\ldots i_{d}} \mathsf{x}_{i_{1}}^{1}\ldots\mathsf{x}_{i_{d}}^{d} \end{split}$$

is a multi-linear form on $\mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_d}$ associated to the tensor T. Critical points of dist_T are called critical rank-1 approximations. Characterization :

A best rank-1 approximation to T minimizes the (squared) distance

$$\begin{split} & \mathsf{dist}_\mathsf{T}:\mathcal{S}_{\boldsymbol{n}} \ \rightarrow \ \mathbb{R}, \\ \mathsf{S} \ = \ \sigma \, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d \ \mapsto \ \|\mathsf{T} - \mathsf{S}\|^2 \ = \ \|\mathsf{T}\|^2 - 2\sigma \langle \mathsf{T}, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d \rangle + \sigma^2 \end{split}$$

It is a critical point of $dist_T$, that is,

$$\begin{split} \nabla_{\mathsf{x}^{j}} \mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1}, \dots, \mathsf{x}^{d}) &= \sigma \, \mathsf{x}^{j}, \quad \text{where} \\ \mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1}, \dots, \mathsf{x}^{d}) &:= \langle \mathsf{T}, \mathsf{x}^{1} \otimes \dots \otimes \mathsf{x}^{d} \rangle \; = \; \sum_{i_{j}=1}^{n_{j}} t_{i_{1} \dots i_{d}} \mathsf{x}_{i_{1}}^{1} \dots \mathsf{x}_{i_{d}}^{d} \end{split}$$

is a multi-linear form on $\mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_d}$ associated to the tensor T. Critical points of dist_T are called critical rank-1 approximations. Characterization: (x^1, \dots, x^d) is a critical point of \mathcal{F}_T restricted to $\mathbb{S}^{n_1-1} \times \cdots \times \mathbb{S}^{n_d-1}$ with critical value $\sigma := \mathcal{F}_T(x^1, \dots, x^d)$

A best rank-1 approximation to T minimizes the (squared) distance

$$\begin{split} & \mathsf{dist}_\mathsf{T}:\mathcal{S}_{\boldsymbol{n}} \ \rightarrow \ \mathbb{R}, \\ \mathsf{S} \ = \ \sigma \, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d \ \mapsto \ \|\mathsf{T} - \mathsf{S}\|^2 \ = \ \|\mathsf{T}\|^2 - 2\sigma \langle \mathsf{T}, \mathsf{x}^1 \otimes \cdots \otimes \mathsf{x}^d \rangle + \sigma^2 \end{split}$$

It is a critical point of $dist_T$, that is,

$$\begin{split} \nabla_{\mathsf{x}^{j}}\mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1},\ldots,\mathsf{x}^{d}) &= \sigma \, \mathsf{x}^{j}, \quad \text{where} \\ \mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1},\ldots,\mathsf{x}^{d}) &:= \, \langle \mathsf{T},\mathsf{x}^{1}\otimes\cdots\otimes\mathsf{x}^{d} \rangle \;=\; \sum_{i_{j}=1}^{n_{j}} t_{i_{1}\ldots i_{d}}\mathsf{x}_{i_{1}}^{1}\ldots\mathsf{x}_{i_{d}}^{d} \end{split}$$

is a multi-linear form on $\mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_d}$ associated to the tensor T. Critical points of dist_T are called critical rank-1 approximations. Characterization : (x^1, \dots, x^d) is a critical point of \mathcal{F}_T restricted to $\mathbb{S}^{n_1-1} \times \cdots \times \mathbb{S}^{n_d-1}$ with critical value $\sigma := \mathcal{F}_T(x^1, \dots, x^d)$ iff $\sigma x^1 \otimes \cdots \otimes x^d \in \mathcal{S}_n$ is a critical rank-1 approximation to T.

If $\mathsf{T} \in \mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2}$ is a matrix,

If $\mathsf{T} \in \mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2}$ is a matrix, then $\mathcal{F}_\mathsf{T}(\mathsf{u},\mathsf{v}) \, = \, \mathsf{u}^\mathsf{T} \mathsf{T} \mathsf{v}$

If $\mathsf{T}\in\mathbb{R}^{n_1}\otimes\mathbb{R}^{n_2}$ is a matrix, then $\mathcal{F}_\mathsf{T}(\mathsf{u},\mathsf{v})\,=\,\mathsf{u}^\mathsf{T}\mathsf{T}\mathsf{v}$ and conditions

$$\nabla_{u}\mathcal{F}_{\mathsf{T}}(\mathsf{u},\mathsf{v}) \;=\; \mathsf{T}\mathsf{v} \;=\; \sigma\mathsf{u}, \quad \nabla_{\mathsf{v}}\mathcal{F}_{\mathsf{T}}(\mathsf{u},\mathsf{v}) \;=\; \mathsf{T}^{\mathsf{T}}\mathsf{u} \;=\; \sigma\mathsf{v},$$

If $T \in \mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2}$ is a matrix, then $\mathcal{F}_T(u, v) = u^T T v$ and conditions

$$\nabla_{u}\mathcal{F}_{\mathsf{T}}(u,v) \;=\; \mathsf{T}v \;=\; \sigma u, \quad \nabla_{v}\mathcal{F}_{\mathsf{T}}(u,v) \;=\; \mathsf{T}^{\mathsf{T}}u \;=\; \sigma v,$$

retrieve a pair $(u, v) \in \mathbb{S}^{n_1-1} \times \mathbb{S}^{n_2-1}$ of singular vectors with singular value $\sigma = u^T T v$ (recall that $TV = \Sigma U$ and $T^T U = \Sigma^T V$).

If $T \in \mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2}$ is a matrix, then $\mathcal{F}_T(u, v) = u^T T v$ and conditions

$$\nabla_{u}\mathcal{F}_{\mathsf{T}}(u,v) \;=\; \mathsf{T}v \;=\; \sigma u, \quad \nabla_{v}\mathcal{F}_{\mathsf{T}}(u,v) \;=\; \mathsf{T}^{\mathsf{T}}u \;=\; \sigma v,$$

retrieve a pair $(u, v) \in \mathbb{S}^{n_1-1} \times \mathbb{S}^{n_2-1}$ of singular vectors with singular value $\sigma = u^T T v$ (recall that $TV = \Sigma U$ and $T^T U = \Sigma^T V$). In particular, $\sigma u v^T \in S_{(n_1,n_2)}$ is a critical rank-1 approximation.

If $T \in \mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2}$ is a matrix, then $\mathcal{F}_T(u, v) = u^T T v$ and conditions

$$\nabla_{u}\mathcal{F}_{\mathsf{T}}(u,v) \;=\; \mathsf{T}v \;=\; \sigma u, \quad \nabla_{v}\mathcal{F}_{\mathsf{T}}(u,v) \;=\; \mathsf{T}^{\mathsf{T}}u \;=\; \sigma v,$$

retrieve a pair $(u, v) \in \mathbb{S}^{n_1-1} \times \mathbb{S}^{n_2-1}$ of singular vectors with singular value $\sigma = u^T T v$ (recall that $TV = \Sigma U$ and $T^T U = \Sigma^T V$). In particular, $\sigma uv^T \in S_{(n_1,n_2)}$ is a critical rank-1 approximation.

Definition

If $\mathsf{T}\in\mathbb{R}^{n_1}\otimes\mathbb{R}^{n_2}$ is a matrix, then $\mathcal{F}_\mathsf{T}(\mathsf{u},\mathsf{v})\,=\,\mathsf{u}^\mathsf{T}\mathsf{T}\mathsf{v}$ and conditions

$$\nabla_{u}\mathcal{F}_{\mathsf{T}}(u,v) \;=\; \mathsf{T}v \;=\; \sigma u, \quad \nabla_{v}\mathcal{F}_{\mathsf{T}}(u,v) \;=\; \mathsf{T}^{\mathsf{T}}u \;=\; \sigma v,$$

retrieve a pair $(u, v) \in \mathbb{S}^{n_1-1} \times \mathbb{S}^{n_2-1}$ of singular vectors with singular value $\sigma = u^T T v$ (recall that $TV = \Sigma U$ and $T^T U = \Sigma^T V$). In particular, $\sigma u v^T \in S_{(n_1,n_2)}$ is a critical rank-1 approximation.

Definition

A singular vector tuple of a tensor $\mathsf{T} \in \mathbb{R}^n$

If $\mathsf{T}\in\mathbb{R}^{n_1}\otimes\mathbb{R}^{n_2}$ is a matrix, then $\mathcal{F}_\mathsf{T}(\mathsf{u},\mathsf{v})\,=\,\mathsf{u}^\mathsf{T}\mathsf{T}\mathsf{v}$ and conditions

$$\nabla_{u}\mathcal{F}_{\mathsf{T}}(\mathsf{u},\mathsf{v}) \;=\; \mathsf{T}\mathsf{v} \;=\; \sigma\mathsf{u}, \quad \nabla_{\mathsf{v}}\mathcal{F}_{\mathsf{T}}(\mathsf{u},\mathsf{v}) \;=\; \mathsf{T}^{\mathsf{T}}\mathsf{u} \;=\; \sigma\mathsf{v},$$

retrieve a pair $(u, v) \in \mathbb{S}^{n_1-1} \times \mathbb{S}^{n_2-1}$ of singular vectors with singular value $\sigma = u^T T v$ (recall that $TV = \Sigma U$ and $T^T U = \Sigma^T V$). In particular, $\sigma u v^T \in S_{(n_1,n_2)}$ is a critical rank-1 approximation.

Definition

A singular vector tuple of a tensor $T \in \mathbb{R}^{n}$ is a critical point (x^{1}, \ldots, x^{d}) of the restriction of \mathcal{F}_{T} to the product of spheres $\mathbb{S}^{n_{1}-1} \times \cdots \times \mathbb{S}^{n_{d}-1}$,

If $\mathsf{T}\in\mathbb{R}^{n_1}\otimes\mathbb{R}^{n_2}$ is a matrix, then $\mathcal{F}_\mathsf{T}(\mathsf{u},\mathsf{v})\,=\,\mathsf{u}^\mathsf{T}\mathsf{T}\mathsf{v}$ and conditions

$$\nabla_{u}\mathcal{F}_{\mathsf{T}}(u,v) \;=\; \mathsf{T}v \;=\; \sigma u, \quad \nabla_{v}\mathcal{F}_{\mathsf{T}}(u,v) \;=\; \mathsf{T}^{\mathsf{T}}u \;=\; \sigma v,$$

retrieve a pair $(u, v) \in \mathbb{S}^{n_1-1} \times \mathbb{S}^{n_2-1}$ of singular vectors with singular value $\sigma = u^T T v$ (recall that $TV = \Sigma U$ and $T^T U = \Sigma^T V$). In particular, $\sigma u v^T \in S_{(n_1,n_2)}$ is a critical rank-1 approximation.

Definition

A singular vector tuple of a tensor $T \in \mathbb{R}^{n}$ is a critical point (x^{1}, \ldots, x^{d}) of the restriction of \mathcal{F}_{T} to the product of spheres $\mathbb{S}^{n_{1}-1} \times \cdots \times \mathbb{S}^{n_{d}-1}$, that is,

$$abla_{\mathsf{x}^j} \mathcal{F}_{\mathsf{T}}(\mathsf{x}^1,\ldots,\mathsf{x}^d) = \sigma \,\mathsf{x}^j, \quad j=1,\ldots,d.$$

If $\mathsf{T}\in\mathbb{R}^{n_1}\otimes\mathbb{R}^{n_2}$ is a matrix, then $\mathcal{F}_\mathsf{T}(\mathsf{u},\mathsf{v})\,=\,\mathsf{u}^\mathsf{T}\mathsf{T}\mathsf{v}$ and conditions

$$\nabla_{u}\mathcal{F}_{\mathsf{T}}(u,v) \;=\; \mathsf{T}v \;=\; \sigma u, \quad \nabla_{v}\mathcal{F}_{\mathsf{T}}(u,v) \;=\; \mathsf{T}^{\mathsf{T}}u \;=\; \sigma v,$$

retrieve a pair $(u, v) \in \mathbb{S}^{n_1-1} \times \mathbb{S}^{n_2-1}$ of singular vectors with singular value $\sigma = u^T T v$ (recall that $TV = \Sigma U$ and $T^T U = \Sigma^T V$). In particular, $\sigma u v^T \in S_{(n_1,n_2)}$ is a critical rank-1 approximation.

Definition

A singular vector tuple of a tensor $T \in \mathbb{R}^{n}$ is a critical point (x^{1}, \ldots, x^{d}) of the restriction of \mathcal{F}_{T} to the product of spheres $\mathbb{S}^{n_{1}-1} \times \cdots \times \mathbb{S}^{n_{d}-1}$, that is,

$$abla_{\mathsf{x}^j} \mathcal{F}_{\mathsf{T}}(\mathsf{x}^1,\ldots,\mathsf{x}^d) = \sigma \,\mathsf{x}^j, \quad j=1,\ldots,d.$$

The number $\sigma = \mathcal{F}_{\mathsf{T}}(\mathsf{x}^1, \dots, \mathsf{x}^d) = (\mathsf{x}^j)^{\mathsf{T}} \nabla_{\mathsf{x}^j} \mathcal{F}_{\mathsf{T}}(\mathsf{x}^1, \dots, \mathsf{x}^d)$

If $T \in \mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2}$ is a matrix, then $\mathcal{F}_T(u, v) = u^T T v$ and conditions

$$\nabla_{u}\mathcal{F}_{\mathsf{T}}(u,v) \;=\; \mathsf{T}v \;=\; \sigma u, \quad \nabla_{v}\mathcal{F}_{\mathsf{T}}(u,v) \;=\; \mathsf{T}^{\mathsf{T}}u \;=\; \sigma v,$$

retrieve a pair $(u, v) \in \mathbb{S}^{n_1-1} \times \mathbb{S}^{n_2-1}$ of singular vectors with singular value $\sigma = u^T T v$ (recall that $TV = \Sigma U$ and $T^T U = \Sigma^T V$). In particular, $\sigma u v^T \in S_{(n_1,n_2)}$ is a critical rank-1 approximation.

Definition

A singular vector tuple of a tensor $T \in \mathbb{R}^{n}$ is a critical point (x^{1}, \ldots, x^{d}) of the restriction of \mathcal{F}_{T} to the product of spheres $\mathbb{S}^{n_{1}-1} \times \cdots \times \mathbb{S}^{n_{d}-1}$, that is,

$$abla_{\mathsf{x}^j}\mathcal{F}_{\mathsf{T}}(\mathsf{x}^1,\ldots,\mathsf{x}^d) = \sigma\,\mathsf{x}^j, \quad j=1,\ldots,d.$$

The number $\sigma = \mathcal{F}_{\mathsf{T}}(\mathsf{x}^1, \dots, \mathsf{x}^d) = (\mathsf{x}^j)^{\mathsf{T}} \nabla_{\mathsf{x}^j} \mathcal{F}_{\mathsf{T}}(\mathsf{x}^1, \dots, \mathsf{x}^d)$ is the associated singular value

If $T \in \mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2}$ is a matrix, then $\mathcal{F}_T(u, v) = u^T T v$ and conditions

$$\nabla_{u}\mathcal{F}_{\mathsf{T}}(u,v) \;=\; \mathsf{T}v \;=\; \sigma u, \quad \nabla_{v}\mathcal{F}_{\mathsf{T}}(u,v) \;=\; \mathsf{T}^{\mathsf{T}}u \;=\; \sigma v,$$

retrieve a pair $(u, v) \in \mathbb{S}^{n_1-1} \times \mathbb{S}^{n_2-1}$ of singular vectors with singular value $\sigma = u^T T v$ (recall that $TV = \Sigma U$ and $T^T U = \Sigma^T V$). In particular, $\sigma u v^T \in S_{(n_1,n_2)}$ is a critical rank-1 approximation.

Definition

A singular vector tuple of a tensor $T \in \mathbb{R}^{n}$ is a critical point (x^{1}, \ldots, x^{d}) of the restriction of \mathcal{F}_{T} to the product of spheres $\mathbb{S}^{n_{1}-1} \times \cdots \times \mathbb{S}^{n_{d}-1}$, that is,

$$abla_{\mathsf{x}^j} \mathcal{F}_{\mathsf{T}}(\mathsf{x}^1,\ldots,\mathsf{x}^d) = \sigma \,\mathsf{x}^j, \quad j = 1,\ldots,d.$$

The number $\sigma = \mathcal{F}_{\mathsf{T}}(\mathsf{x}^1, \dots, \mathsf{x}^d) = (\mathsf{x}^j)^{\mathsf{T}} \nabla_{\mathsf{x}^j} \mathcal{F}_{\mathsf{T}}(\mathsf{x}^1, \dots, \mathsf{x}^d)$ is the associated singular value (can be made positive via $\mathsf{x}^1 \mapsto \pm \mathsf{x}^1$).

Singular vector tuples:

Singular vector tuples: solutions in $\mathbb{S}^{n-1} := \mathbb{S}^{n_1-1} \times \cdots \times \mathbb{S}^{n_d-1}$ of

$$(*) \quad \mathsf{rank} \begin{pmatrix} \frac{\partial \mathcal{F}_{\mathsf{T}}}{\partial x_1^j}(\mathsf{x}) & \dots & \frac{\partial \mathcal{F}_{\mathsf{T}}}{\partial x_{n_j}^j}(\mathsf{x}) \\ x_1^j & \dots & x_{n_j}^j \end{pmatrix} \leq 1, \quad j = 1, \dots, d.$$

Singular vector tuples: solutions in $\mathbb{S}^{n-1} := \mathbb{S}^{n_1-1} imes \cdots imes \mathbb{S}^{n_d-1}$ of

$$(*) \quad \mathsf{rank} \begin{pmatrix} \frac{\partial \mathcal{F}_{\mathsf{T}}}{\partial x_1^j}(\mathsf{x}) & \dots & \frac{\partial \mathcal{F}_{\mathsf{T}}}{\partial x_{n_j}^j}(\mathsf{x}) \\ x_1^j & \dots & x_{n_j}^j \end{pmatrix} \leq 1, \quad j = 1, \dots, d.$$

If (x^1, \ldots, x^d) is a singular vector tuple,

Singular vector tuples: solutions in $\mathbb{S}^{n-1} := \mathbb{S}^{n_1-1} \times \cdots \times \mathbb{S}^{n_d-1}$ of (*) rank $\begin{pmatrix} \frac{\partial \mathcal{F}_{\mathbb{T}}}{\partial x_1^j}(\mathsf{x}) & \dots & \frac{\partial \mathcal{F}_{\mathbb{T}}}{\partial x_{n_j}^j}(\mathsf{x}) \\ x_1^j & \dots & x_n^j \end{pmatrix} \leq 1, \quad j = 1, \dots, d.$

If (x^1, \ldots, x^d) is a singular vector tuple, then so is $(\pm x^1, \ldots, \pm x^d)$.

Singular vector tuples: solutions in $\mathbb{S}^{n-1} := \mathbb{S}^{n_1-1} \times \cdots \times \mathbb{S}^{n_d-1}$ of (*) rank $\begin{pmatrix} \frac{\partial \mathcal{F}_T}{\partial x_1^j}(x) & \dots & \frac{\partial \mathcal{F}_T}{\partial x_{n_j}^j}(x) \\ x_1^j & & x_2^j \end{pmatrix} \leq 1, \quad j = 1, \dots, d.$

If (x^1, \ldots, x^d) is a singular vector tuple, then so is $(\pm x^1, \ldots, \pm x^d)$. Algebraic geometer: study complex solutions of the system (*).

Singular vector tuples: solutions in $\mathbb{S}^{n-1} := \mathbb{S}^{n_1-1} imes \cdots imes \mathbb{S}^{n_d-1}$ of

$$(*) \quad \operatorname{rank} \begin{pmatrix} \frac{\partial \mathcal{F}_{\mathsf{T}}}{\partial x_{1}^{j}}(\mathsf{x}) & \dots & \frac{\partial \mathcal{F}_{\mathsf{T}}}{\partial x_{n_{j}}^{j}}(\mathsf{x}) \\ x_{1}^{j} & \dots & x_{n_{j}}^{j} \end{pmatrix} \leq 1, \quad j = 1, \dots, d.$$

If (x^1, \ldots, x^d) is a singular vector tuple, then so is $(\pm x^1, \ldots, \pm x^d)$. Algebraic geometer: study complex solutions of the system (*). Definition

Singular vector tuples: solutions in $\mathbb{S}^{n-1} := \mathbb{S}^{n_1-1} \times \cdots \times \mathbb{S}^{n_d-1}$ of

(*) rank
$$\begin{pmatrix} \frac{\partial J_j}{\partial x_1^j}(\mathbf{x}) & \dots & \frac{\partial J_j}{\partial x_{n_j}^j}(\mathbf{x}) \\ x_1^j & \dots & x_{n_j}^j \end{pmatrix} \leq 1, \quad j = 1, \dots, d.$$

If (x^1, \ldots, x^d) is a singular vector tuple, then so is $(\pm x^1, \ldots, \pm x^d)$. Algebraic geometer: study complex solutions of the system (*). Definition A solution $[x] := ([x^1], \ldots, [x^d]) \in \mathbb{P}^{n_1-1}_{\mathbb{C}} \times \cdots \times \mathbb{P}^{n_d-1}_{\mathbb{C}}$ to (*)

Singular vector tuples: solutions in $\mathbb{S}^{n-1} := \mathbb{S}^{n_1-1} \times \cdots \times \mathbb{S}^{n_d-1}$ of $\begin{pmatrix} \frac{\partial \mathcal{F}_T}{\partial -i}(x) & \dots & \frac{\partial \mathcal{F}_T}{\partial -i}(x) \end{pmatrix}$

$$(*) \quad \operatorname{rank} \begin{pmatrix} \partial x_1^j & \cdots & \partial x_{n_j}^j & \cdots \\ x_1^j & \cdots & x_{n_j}^j \end{pmatrix} \leq 1, \quad j = 1, \dots, d.$$

If (x^1, \ldots, x^d) is a singular vector tuple, then so is $(\pm x^1, \ldots, \pm x^d)$. Algebraic geometer: study complex solutions of the system (*). Definition A solution $[x] := ([x^1], \ldots, [x^d]) \in \mathbb{P}^{n_1-1}_{\mathbb{C}} \times \cdots \times \mathbb{P}^{n_d-1}_{\mathbb{C}}$ to (*) is a (projective) singular vector tuple.

Singular vector tuples: solutions in $\mathbb{S}^{n-1} := \mathbb{S}^{n_1-1} \times \cdots \times \mathbb{S}^{n_d-1}$ of

$$(*) \quad \mathsf{rank} \begin{pmatrix} \frac{\partial \mathcal{F}_{\mathsf{T}}}{\partial x_1^j}(\mathsf{x}) & \dots & \frac{\partial \mathcal{F}_{\mathsf{T}}}{\partial x_{n_j}^j}(\mathsf{x}) \\ x_1^j & \dots & x_{n_j}^j \end{pmatrix} \leq 1, \quad j = 1, \dots, d.$$

If (x^1, \ldots, x^d) is a singular vector tuple, then so is $(\pm x^1, \ldots, \pm x^d)$. Algebraic geometer: study complex solutions of the system (*). Definition A solution $[x] := ([x^1], \ldots, [x^d]) \in \mathbb{P}^{n_1-1}_{\mathbb{C}} \times \cdots \times \mathbb{P}^{n_d-1}_{\mathbb{C}}$ to (*) is a (projective) singular vector tuple.

Friedland and Ottaviani, 2014

Singular vector tuples: solutions in $\mathbb{S}^{n-1} := \mathbb{S}^{n_1-1} \times \cdots \times \mathbb{S}^{n_d-1}$ of

$$(*) \quad \mathsf{rank} \begin{pmatrix} \frac{\partial \mathcal{F}_{\mathsf{T}}}{\partial x_1^j}(\mathsf{x}) & \dots & \frac{\partial \mathcal{F}_{\mathsf{T}}}{\partial x_{n_j}^j}(\mathsf{x}) \\ x_1^j & \dots & x_{n_j}^j \end{pmatrix} \leq 1, \quad j = 1, \dots, d.$$

If (x^1, \ldots, x^d) is a singular vector tuple, then so is $(\pm x^1, \ldots, \pm x^d)$. Algebraic geometer: study complex solutions of the system (*). Definition A solution $[x] := ([x^1], \ldots, [x^d]) \in \mathbb{P}^{n_1-1}_{\mathbb{C}} \times \cdots \times \mathbb{P}^{n_d-1}_{\mathbb{C}}$ to (*) is a (projective) singular vector tuple.

Friedland and Ottaviani, 2014

A generic $T \in \mathbb{R}^n$ has sv(n) (projective) singular vector tuples corresponding to non-zero singular values,

Singular vector tuples: solutions in $\mathbb{S}^{n-1} := \mathbb{S}^{n_1-1} \times \cdots \times \mathbb{S}^{n_d-1}$ of

$$(*) \quad \mathsf{rank} \begin{pmatrix} \frac{\partial \mathcal{F}_{\mathsf{T}}}{\partial x_1^j}(\mathsf{x}) & \dots & \frac{\partial \mathcal{F}_{\mathsf{T}}}{\partial x_{n_j}^j}(\mathsf{x}) \\ x_1^j & \dots & x_{n_j}^j \end{pmatrix} \leq 1, \quad j = 1, \dots, d.$$

If (x^1, \ldots, x^d) is a singular vector tuple, then so is $(\pm x^1, \ldots, \pm x^d)$. Algebraic geometer: study complex solutions of the system (*). Definition A solution $[x] := ([x^1], \ldots, [x^d]) \in \mathbb{P}^{n_1-1}_{\mathbb{C}} \times \cdots \times \mathbb{P}^{n_d-1}_{\mathbb{C}}$ to (*) is a (projective) singular vector tuple.

Friedland and Ottaviani, 2014

A generic $T \in \mathbb{R}^n$ has sv(n) (projective) singular vector tuples corresponding to non-zero singular values, where sv(n) is the coefficient of the monomial $\prod_{i=1}^d z_i^{n_i-1}$ in the polynomials

$$\prod_{j=1}^{d} \frac{(z_1 + \dots + z_{j-1} + z_{j+1} + \dots + z_d)^{n_j} - z_j^{n_j}}{(z_1 + \dots + z_{j-1} + z_{j+1} + \dots + z_d) - z_j}$$
Let $\mathcal{S} \subset \mathbb{R}^n$ be a real algebraic variety

Let $S \subset \mathbb{R}^n$ be a real algebraic variety and consider the (squared) Euclidean distance to S from a generic point $t \in \mathbb{R}^n$:

Let $S \subset \mathbb{R}^n$ be a real algebraic variety and consider the (squared) Euclidean distance to S from a generic point $t \in \mathbb{R}^n$:

$$\operatorname{dist}_{\operatorname{t}}: \mathcal{S} \rightarrow \mathbb{R}, \quad \operatorname{s} \mapsto \sum_{i=1}^{n} (t_i - s_i)^2.$$

Let $S \subset \mathbb{R}^n$ be a real algebraic variety and consider the (squared) Euclidean distance to S from a generic point $t \in \mathbb{R}^n$:

$$\operatorname{dist}_{\mathsf{t}}: \mathcal{S} \rightarrow \mathbb{R}, \quad \mathsf{s} \mapsto \sum_{i=1}^{n} (t_i - s_i)^2.$$

The number EDdeg(S) of "complex critical points" of dist_t

Let $S \subset \mathbb{R}^n$ be a real algebraic variety and consider the (squared) Euclidean distance to S from a generic point $t \in \mathbb{R}^n$:

$$\operatorname{dist}_{\operatorname{t}}: \mathcal{S} \rightarrow \mathbb{R}, \quad \operatorname{s} \mapsto \sum_{i=1}^{n} (t_i - s_i)^2.$$

The number EDdeg(S) of "complex critical points" of dist_t is known as the Euclidean distance degree (ED degree) of S:

Let $S \subset \mathbb{R}^n$ be a real algebraic variety and consider the (squared) Euclidean distance to S from a generic point $t \in \mathbb{R}^n$:

$$\operatorname{dist}_{\operatorname{t}}: \mathcal{S} \rightarrow \mathbb{R}, \quad \operatorname{s} \mapsto \sum_{i=1}^{n} (t_i - s_i)^2.$$

The number EDdeg(S) of "complex critical points" of dist_t is known as the Euclidean distance degree (ED degree) of S:

$$\mathsf{EDdeg}(\mathcal{S}) \;=\; \# \left\{ \mathsf{s} \in \mathcal{S}^{\mathbb{C}} \setminus \mathcal{S}^{\mathbb{C}}_{\mathsf{sing}} \,:\, \mathsf{t} - \mathsf{s} \perp \, \mathcal{T}_{\mathsf{s}} \mathcal{S}^{\mathbb{C}} \right\}$$

Let $S \subset \mathbb{R}^n$ be a real algebraic variety and consider the (squared) Euclidean distance to S from a generic point $t \in \mathbb{R}^n$:

$$\operatorname{dist}_{\operatorname{t}}: \mathcal{S} \rightarrow \mathbb{R}, \quad \operatorname{s} \mapsto \sum_{i=1}^{n} (t_i - s_i)^2.$$

The number EDdeg(S) of "complex critical points" of dist_t is known as the Euclidean distance degree (ED degree) of S:

$$\mathsf{EDdeg}(\mathcal{S}) \;=\; \# \left\{ \mathsf{s} \in \mathcal{S}^{\mathbb{C}} \setminus \mathcal{S}^{\mathbb{C}}_{\mathsf{sing}} \,:\, \mathsf{t} - \mathsf{s} \perp \, \mathcal{T}_{\mathsf{s}} \mathcal{S}^{\mathbb{C}} \right\}$$

Observation:

Let $S \subset \mathbb{R}^n$ be a real algebraic variety and consider the (squared) Euclidean distance to S from a *generic* point $t \in \mathbb{R}^n$:

$$\operatorname{dist}_{\operatorname{t}}: \mathcal{S} \rightarrow \mathbb{R}, \quad \operatorname{s} \mapsto \sum_{i=1}^{n} (t_i - s_i)^2.$$

The number EDdeg(S) of "complex critical points" of dist_t is known as the Euclidean distance degree (ED degree) of S:

$$\mathsf{EDdeg}(\mathcal{S}) \;=\; \# \left\{ \mathsf{s} \in \mathcal{S}^{\mathbb{C}} \setminus \mathcal{S}^{\mathbb{C}}_{\mathsf{sing}} \,:\, \mathsf{t} - \mathsf{s} \perp \, \mathcal{T}_{\mathsf{s}} \mathcal{S}^{\mathbb{C}} \right\}$$

Observation: EDdeg(S) gives an upper bound on the number of real critical of $dist_t|_{S \setminus S_{sing}}$ for a generic $t \in \mathbb{R}^n$.

Let $S \subset \mathbb{R}^n$ be a real algebraic variety and consider the (squared) Euclidean distance to S from a *generic* point $t \in \mathbb{R}^n$:

$$\operatorname{dist}_{\operatorname{t}}: \mathcal{S} \rightarrow \mathbb{R}, \quad \operatorname{s} \mapsto \sum_{i=1}^{n} (t_i - s_i)^2.$$

The number EDdeg(S) of "complex critical points" of dist_t is known as the Euclidean distance degree (ED degree) of S:

$$\mathsf{EDdeg}(\mathcal{S}) \;=\; \# \left\{ \mathsf{s} \in \mathcal{S}^{\mathbb{C}} \setminus \mathcal{S}^{\mathbb{C}}_{\mathsf{sing}} \,:\, \mathsf{t} - \mathsf{s} \perp \, \mathcal{T}_{\mathsf{s}} \mathcal{S}^{\mathbb{C}} \right\}$$

Observation: EDdeg(S) gives an upper bound on the number of real critical of $dist_t|_{S \setminus S_{sing}}$ for a generic $t \in \mathbb{R}^n$.

J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels and R. R. Thomas. *The Euclidean Distance Degree of an Algebraic Variety*. Foundations of Computational Mathematics, 16(1), 2013.

Let $S \subset \mathbb{R}^n$ be a real algebraic variety and consider the (squared) Euclidean distance to S from a *generic* point $t \in \mathbb{R}^n$:

$$\operatorname{dist}_{\operatorname{t}}: \mathcal{S} \rightarrow \mathbb{R}, \quad \operatorname{s} \mapsto \sum_{i=1}^{n} (t_i - s_i)^2.$$

The number EDdeg(S) of "complex critical points" of dist_t is known as the Euclidean distance degree (ED degree) of S:

$$\mathsf{EDdeg}(\mathcal{S}) \;=\; \# \left\{ \mathsf{s} \in \mathcal{S}^{\mathbb{C}} \setminus \mathcal{S}^{\mathbb{C}}_{\mathsf{sing}} \,:\, \mathsf{t} - \mathsf{s} \perp \, \mathcal{T}_{\mathsf{s}} \mathcal{S}^{\mathbb{C}} \right\}$$

Observation: EDdeg(S) gives an upper bound on the number of real critical of dist_t $|_{S \setminus S_{sing}}$ for a generic t $\in \mathbb{R}^n$.

J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels and R. R. Thomas. *The Euclidean Distance Degree of an Algebraic Variety*. Foundations of Computational Mathematics, 16(1), 2013.

The result of Friedland and Ottaviani gives a formula for the ED degree $EDdeg(S_n) = sv(n)$ of the Segre variety $S_n \subset \mathbb{R}^n$.

Counting critical rank-1 approximations

Counting critical rank-1 approximations

The number of critical rank-1 approximations to a generic tensor $\mathsf{T} \in \mathbb{R}^{\textit{n}}$

Counting critical rank-1 approximations The number of critical rank-1 approximations to a generic tensor $T \in \mathbb{R}^n$ is upper-bounded by the coefficient sv(n) in front of $\prod_{j=1}^d z_j^{n_j-1}$ in the polynomial

$$\prod_{j=1}^{d} \frac{(z_1 + \dots + z_{j-1} + z_{j+1} + \dots + z_d)^{n_j} - z_j^{n_j}}{(z_1 + \dots + z_{j-1} + z_{j+1} + \dots + z_d) - z_j}$$

Counting critical rank-1 approximations The number of critical rank-1 approximations to a generic tensor $T \in \mathbb{R}^n$ is upper-bounded by the coefficient sv(n) in front of $\prod_{j=1}^d z_j^{n_j-1}$ in the polynomial

$$\prod_{j=1}^{d} \frac{(z_1 + \dots + z_{j-1} + z_{j+1} + \dots + z_d)^{n_j} - z_j^{n_j}}{(z_1 + \dots + z_{j-1} + z_{j+1} + \dots + z_d) - z_j}$$

$\boldsymbol{n}=(n_1,\ldots,n_d)$	sv(n)
(n_1, n_2)	$\min(n_1, n_2)$
$2^d = (2, \ldots, 2)$	<i>d</i> !
$(2, 2, n \ge 3)$	8
(2, 3, 3)	15
$(2, 3, n \ge 4)$	18
(3, 3, 3)	37
(3, 3, 4)	55
$(3, 3, n \ge 5)$	61
$n_d \ge 1 + \sum_{j=1}^{d-1} (n_j - 1)$	stabilizes

Problem (to work on during the semester program)

Problem (to work on during the semester program)

Understand whether sv(n) gives a sharp bound on the number of critical rank-one approximations to a generic $T \in \mathbb{R}^{n}$.

Problem (to work on during the semester program)

Understand whether sv(n) gives a sharp bound on the number of critical rank-one approximations to a generic $T \in \mathbb{R}^n$. Equivalently, given $n = (n_1, \ldots, n_d)$ does there exist a $T \in \mathbb{R}^n$ with only real sv(n) many singular vector tuples?

Problem (to work on during the semester program)

Understand whether sv(n) gives a sharp bound on the number of critical rank-one approximations to a generic $T \in \mathbb{R}^n$. Equivalently, given $n = (n_1, \ldots, n_d)$ does there exist a $T \in \mathbb{R}^n$ with only real sv(n) many singular vector tuples?

Note:

Problem (to work on during the semester program)

Understand whether sv(n) gives a sharp bound on the number of critical rank-one approximations to a generic $T \in \mathbb{R}^n$. Equivalently, given $n = (n_1, \ldots, n_d)$ does there exist a $T \in \mathbb{R}^n$ with only real sv(n) many singular vector tuples?

Note: any generic matrix $T \in \mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2}$ has exactly min (n_1, n_2) critical rank-one approximations (Eckart-Young theorem).

Problem (to work on during the semester program)

Understand whether sv(n) gives a sharp bound on the number of critical rank-one approximations to a generic $T \in \mathbb{R}^n$. Equivalently, given $n = (n_1, \ldots, n_d)$ does there exist a $T \in \mathbb{R}^n$ with only real sv(n) many singular vector tuples?

Note: any generic matrix $T \in \mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2}$ has exactly min (n_1, n_2) critical rank-one approximations (Eckart-Young theorem).

$$n_1 = \cdots = n_d = 2$$
 (to start with...)

Does there exist a multi-linear map $\mathcal{F}:\mathbb{R}^2\times\cdots\times\mathbb{R}^2\to\mathbb{R}$

Problem (to work on during the semester program)

Understand whether sv(n) gives a sharp bound on the number of critical rank-one approximations to a generic $T \in \mathbb{R}^n$. Equivalently, given $n = (n_1, \ldots, n_d)$ does there exist a $T \in \mathbb{R}^n$ with only real sv(n) many singular vector tuples?

Note: any generic matrix $T \in \mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2}$ has exactly min (n_1, n_2) critical rank-one approximations (Eckart-Young theorem).

$$n_1 = \cdots = n_d = 2$$
 (to start with...)

Does there exist a multi-linear map $\mathcal{F} : \mathbb{R}^2 \times \cdots \times \mathbb{R}^2 \to \mathbb{R}$ with $2^d d!$ many critical points on the torus $\mathbb{T}^d = \mathbb{S}^1 \times \cdots \times \mathbb{S}^1 \subset \mathbb{R}^{2d}$?

Problem (to work on during the semester program)

Understand whether sv(n) gives a sharp bound on the number of critical rank-one approximations to a generic $T \in \mathbb{R}^n$. Equivalently, given $n = (n_1, \ldots, n_d)$ does there exist a $T \in \mathbb{R}^n$ with only real sv(n) many singular vector tuples?

Note: any generic matrix $T \in \mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2}$ has exactly min (n_1, n_2) critical rank-one approximations (Eckart-Young theorem).

$$n_1 = \cdots = n_d = 2$$
 (to start with...)

Does there exist a multi-linear map $\mathcal{F} : \mathbb{R}^2 \times \cdots \times \mathbb{R}^2 \to \mathbb{R}$ with $2^d d!$ many critical points on the torus $\mathbb{T}^d = \mathbb{S}^1 \times \cdots \times \mathbb{S}^1 \subset \mathbb{R}^{2d}$?

Hint: \mathbb{T}^d is parametrized by polar coordinates.

Problem (to work on during the semester program)

Understand whether sv(n) gives a sharp bound on the number of critical rank-one approximations to a generic $T \in \mathbb{R}^n$. Equivalently, given $n = (n_1, \ldots, n_d)$ does there exist a $T \in \mathbb{R}^n$ with only real sv(n) many singular vector tuples?

Note: any generic matrix $T \in \mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2}$ has exactly min (n_1, n_2) critical rank-one approximations (Eckart-Young theorem).

$$n_1 = \cdots = n_d = 2$$
 (to start with...)

Does there exist a multi-linear map $\mathcal{F} : \mathbb{R}^2 \times \cdots \times \mathbb{R}^2 \to \mathbb{R}$ with $2^d d!$ many critical points on the torus $\mathbb{T}^d = \mathbb{S}^1 \times \cdots \times \mathbb{S}^1 \subset \mathbb{R}^{2d}$?

Hint: \mathbb{T}^d is parametrized by polar coordinates. So, look at

$$\mathcal{F}(\theta_1,\ldots,\theta_d) = \sum_{\varepsilon \in \{-1,1\}^d} \left(\chi_\varepsilon \cos(\varepsilon_1 \theta_1 + \cdots + \varepsilon_d \theta_d) + \xi_\varepsilon \sin(\varepsilon_1 \theta_1 + \cdots + \varepsilon_d \theta_d) \right)$$

Rank-1 approximation problem in statistics

Rank-1 approximation problem in statistics A tensor $\mathsf{T}\in\mathbb{R}^n_{\geq 0}$ with non-negative entries

Rank-1 approximation problem in statistics A tensor $T \in \mathbb{R}_{\geq 0}^{n}$ with non-negative entries satisfying $\sum_{i_j=1}^{n_j} t_{i_1...i_d} = 1$

$$t_{i_1\ldots i_d} = \mathbb{P}\left(X_1 = i_1, \ldots, X_d = i_d\right)$$

of discrete random variables X_1, \ldots, X_d with n_1, \ldots, n_d atoms.

$$t_{i_1\ldots i_d} = \mathbb{P}\left(X_1 = i_1, \ldots, X_d = i_d\right)$$

of discrete random variables X_1, \ldots, X_d with n_1, \ldots, n_d atoms. Moreover,

$$t_{i_1\ldots i_d} = \mathbb{P}\left(X_1 = i_1, \ldots, X_d = i_d\right)$$

of discrete random variables X_1, \ldots, X_d with n_1, \ldots, n_d atoms. Moreover, $T = x^1 \otimes \cdots \otimes x^d$ is of rank 1

$$t_{i_1\ldots i_d} = \mathbb{P}\left(X_1 = i_1, \ldots, X_d = i_d\right)$$

of discrete random variables X_1, \ldots, X_d with n_1, \ldots, n_d atoms. Moreover, $T = x^1 \otimes \cdots \otimes x^d$ is of rank 1 iff X_1, \ldots, X_d are *statistically independent*

$$t_{i_1\ldots i_d} = \mathbb{P}\left(X_1 = i_1, \ldots, X_d = i_d\right)$$

of discrete random variables X_1, \ldots, X_d with n_1, \ldots, n_d atoms. Moreover, $T = x^1 \otimes \cdots \otimes x^d$ is of rank 1 iff X_1, \ldots, X_d are *statistically independent* (with x^j being the law of X_j).

$$t_{i_1\ldots i_d} = \mathbb{P}\left(X_1 = i_1, \ldots, X_d = i_d\right)$$

of discrete random variables X_1, \ldots, X_d with n_1, \ldots, n_d atoms. Moreover, $T = x^1 \otimes \cdots \otimes x^d$ is of rank 1 iff X_1, \ldots, X_d are statistically independent (with x^j being the law of X_j). $\Delta_{n-1} = \mathbb{R}^n_{\geq 0} \cap \left\{ \sum_{i_j=1}^{n_j} t_{i_1 \ldots i_d} = 1 \right\}$ – the probability simplex.

$$t_{i_1\ldots i_d} = \mathbb{P}\left(X_1 = i_1, \ldots, X_d = i_d\right)$$

of discrete random variables X_1, \ldots, X_d with n_1, \ldots, n_d atoms. Moreover, $T = x^1 \otimes \cdots \otimes x^d$ is of rank 1 iff X_1, \ldots, X_d are statistically independent (with x^j being the law of X_j). $\Delta_{n-1} = \mathbb{R}^n_{\geq 0} \cap \left\{ \sum_{i_j=1}^{n_j} t_{i_1 \ldots i_d} = 1 \right\}$ – the probability simplex. $\mathcal{M}_n = \mathcal{S}_n \cap \Delta_{n-1}$ – the independence model (rank-1 elts in Δ_{n-1}).

$$t_{i_1\ldots i_d} = \mathbb{P}\left(X_1 = i_1, \ldots, X_d = i_d\right)$$

of discrete random variables X_1, \ldots, X_d with n_1, \ldots, n_d atoms. Moreover, $T = x^1 \otimes \cdots \otimes x^d$ is of rank 1 iff X_1, \ldots, X_d are statistically independent (with x^j being the law of X_j). $\Delta_{n-1} = \mathbb{R}^n_{\geq 0} \cap \left\{ \sum_{i_j=1}^{n_j} t_{i_1 \ldots i_d} = 1 \right\}$ – the probability simplex. $\mathcal{M}_n = \mathcal{S}_n \cap \Delta_{n-1}$ – the independence model (rank-1 elts in Δ_{n-1}).

How far is a tuple of random variables from being independent?
Rank-1 approximation problem in statistics A tensor $T \in \mathbb{R}_{\geq 0}^{n}$ with non-negative entries satisfying $\sum_{i_j=1}^{n_j} t_{i_1...i_d} = 1$ defines a joint probability law

$$t_{i_1\ldots i_d} = \mathbb{P}\left(X_1 = i_1, \ldots, X_d = i_d\right)$$

of discrete random variables X_1, \ldots, X_d with n_1, \ldots, n_d atoms. Moreover, $T = x^1 \otimes \cdots \otimes x^d$ is of rank 1 iff X_1, \ldots, X_d are statistically independent (with x^j being the law of X_j). $\Delta_{n-1} = \mathbb{R}_{\geq 0}^n \cap \left\{ \sum_{i_j=1}^{n_j} t_{i_1 \ldots i_d} = 1 \right\}$ – the probability simplex. $\mathcal{M}_n = \mathcal{S}_n \cap \Delta_{n-1}$ – the independence model (rank-1 elts in Δ_{n-1}). How far is a tuple of random variables from being independent? For a joint probability law $T \in \Delta_{n-1}$ determine the closest to it independent law $T^* \in \mathcal{M}_n$, Rank-1 approximation problem in statistics A tensor $T \in \mathbb{R}^{n}_{\geq 0}$ with non-negative entries satisfying $\sum_{i_{j}=1}^{n_{j}} t_{i_{1}...i_{d}} = 1$ defines a joint probability law

$$t_{i_1\ldots i_d} = \mathbb{P}\left(X_1 = i_1, \ldots, X_d = i_d\right)$$

of discrete random variables X_1, \ldots, X_d with n_1, \ldots, n_d atoms. Moreover, $T = x^1 \otimes \cdots \otimes x^d$ is of rank 1 iff X_1, \ldots, X_d are statistically independent (with x^j being the law of X_i). $\Delta_{n-1} = \mathbb{R}^n_{\geq 0} \cap \left\{ \sum_{i_i=1}^{n_i} t_{i_1...i_d} = 1 \right\}$ – the probability simplex. $\mathcal{M}_{n} = \mathcal{S}_{n} \cap \Delta_{n-1}$ - the independence model (rank-1 elts in Δ_{n-1}). How far is a tuple of random variables from being independent? For a joint probability law $T \in \Delta_{n-1}$ determine the closest to it independent law $\mathsf{T}^* \in \mathcal{M}_n$, that is, an independent law satisfying $\|T - T^*\| = \min_{S \in M} \|T - S\|.$

Let $\mathcal{S} \subset \mathbb{R}^n$ be a conic (invariant under scalings) variety,

Let $S \subset \mathbb{R}^n$ be a conic (invariant under scalings) variety, let $H \subset \mathbb{R}^n$ be an affine hypersurface

Let $S \subset \mathbb{R}^n$ be a conic (invariant under scalings) variety, let $H \subset \mathbb{R}^n$ be an affine hypersurface and for a generic $t \in H$ consider the restriction of the (squared) Euclidean distance

Let $S \subset \mathbb{R}^n$ be a conic (invariant under scalings) variety, let $H \subset \mathbb{R}^n$ be an affine hypersurface and for a generic $t \in H$ consider the restriction of the (squared) Euclidean distance

$${\sf dist}^{H}_{{\sf t}}:\mathcal{S}\cap H\ o\ \mathbb{R},\ \ {\sf s}\ \mapsto\ \sum_{i=1}^{n}(t_{i}-s_{i})^{2}.$$

Let $S \subset \mathbb{R}^n$ be a conic (invariant under scalings) variety, let $H \subset \mathbb{R}^n$ be an affine hypersurface and for a generic $t \in H$ consider the restriction of the (squared) Euclidean distance

$$\operatorname{dist}_{\operatorname{t}}^{H}: \mathcal{S} \cap H \rightarrow \mathbb{R}, \quad \operatorname{s} \mapsto \sum_{i=1}^{n} (t_{i} - s_{i})^{2}.$$

The number $aEDdeg(S \cap H)$ of "complex critical points" of dist^H_t is called the affine Euclidean distance degree of $S \cap H$:

Let $S \subset \mathbb{R}^n$ be a conic (invariant under scalings) variety, let $H \subset \mathbb{R}^n$ be an affine hypersurface and for a generic $t \in H$ consider the restriction of the (squared) Euclidean distance

$$\operatorname{dist}_{\operatorname{t}}^{H}: \mathcal{S} \cap H \rightarrow \mathbb{R}, \quad \operatorname{s} \mapsto \sum_{i=1}^{n} (t_{i} - s_{i})^{2}.$$

The number $aEDdeg(S \cap H)$ of "complex critical points" of dist^H_t is called the affine Euclidean distance degree of $S \cap H$:

 $\mathsf{aEDdeg}(\mathcal{S} \cap H) \;=\; \# \left\{ \mathsf{s} \in (\mathcal{S} \cap H)^{\mathbb{C}} \setminus \mathcal{S}_{\mathsf{sing}}^{\mathbb{C}} \,:\, \mathsf{t} - \mathsf{s} \perp \, T_{\mathsf{s}}(\mathcal{S} \cap H)^{\mathbb{C}} \right\}.$

Let $S \subset \mathbb{R}^n$ be a conic (invariant under scalings) variety, let $H \subset \mathbb{R}^n$ be an affine hypersurface and for a generic $t \in H$ consider the restriction of the (squared) Euclidean distance

$${\sf dist}^{H}_{{\sf t}}:\mathcal{S}\cap H\ o\ \mathbb{R},\ \ {\sf s}\ \mapsto\ \sum_{i=1}^{n}(t_{i}-s_{i})^{2}.$$

The number $aEDdeg(S \cap H)$ of "complex critical points" of dist^H_t is called the affine Euclidean distance degree of $S \cap H$:

 $\mathsf{aEDdeg}(\mathcal{S} \cap H) = \# \left\{ \mathsf{s} \in (\mathcal{S} \cap H)^{\mathbb{C}} \setminus \mathcal{S}_{\mathsf{sing}}^{\mathbb{C}} : \mathsf{t} - \mathsf{s} \perp T_{\mathsf{s}}(\mathcal{S} \cap H)^{\mathbb{C}} \right\}.$ Remark:

Let $S \subset \mathbb{R}^n$ be a conic (invariant under scalings) variety, let $H \subset \mathbb{R}^n$ be an affine hypersurface and for a generic $t \in H$ consider the restriction of the (squared) Euclidean distance

$${\sf dist}^{H}_{{\sf t}}:\mathcal{S}\cap H\ o\ \mathbb{R},\ \ {\sf s}\ \mapsto\ \sum_{i=1}^{n}(t_{i}-s_{i})^{2}.$$

The number aEDdeg($S \cap H$) of "complex critical points" of dist^H_t is called the affine Euclidean distance degree of $S \cap H$:

 $\mathsf{aEDdeg}(\mathcal{S} \cap H) \;=\; \# \left\{ \mathsf{s} \in (\mathcal{S} \cap H)^{\mathbb{C}} \setminus \mathcal{S}_{\mathsf{sing}}^{\mathbb{C}} \,:\, \mathsf{t} - \mathsf{s} \perp \, T_{\mathsf{s}}(\mathcal{S} \cap H)^{\mathbb{C}} \right\}.$

Remark: numbers EDdeg(S) and $aEDdeg(S \cap H)$ differ in general.

Let $S \subset \mathbb{R}^n$ be a conic (invariant under scalings) variety, let $H \subset \mathbb{R}^n$ be an affine hypersurface and for a generic $t \in H$ consider the restriction of the (squared) Euclidean distance

$$\operatorname{dist}_{\operatorname{t}}^{H}: \mathcal{S} \cap H \rightarrow \mathbb{R}, \hspace{0.3cm} \operatorname{s} \mapsto \hspace{0.3cm} \sum_{i=1}^{n} (t_{i} - s_{i})^{2}.$$

The number aEDdeg($S \cap H$) of "complex critical points" of dist^H_t is called the affine Euclidean distance degree of $S \cap H$:

 $\mathsf{aEDdeg}(\mathcal{S} \cap H) \;=\; \# \left\{ \mathsf{s} \in (\mathcal{S} \cap H)^{\mathbb{C}} \setminus \mathcal{S}_{\mathsf{sing}}^{\mathbb{C}} \,:\, \mathsf{t} - \mathsf{s} \perp \, T_{\mathsf{s}}(\mathcal{S} \cap H)^{\mathbb{C}} \right\}.$

Remark: numbers EDdeg(S) and $aEDdeg(S \cap H)$ differ in general. Observation:

Let $S \subset \mathbb{R}^n$ be a conic (invariant under scalings) variety, let $H \subset \mathbb{R}^n$ be an affine hypersurface and for a generic $t \in H$ consider the restriction of the (squared) Euclidean distance

$${\sf dist}^{H}_{{\sf t}}:\mathcal{S}\cap H\ o\ \mathbb{R},\ \ {\sf s}\ \mapsto\ \sum_{i=1}^{n}(t_{i}-s_{i})^{2}.$$

The number aEDdeg($S \cap H$) of "complex critical points" of dist^H_t is called the affine Euclidean distance degree of $S \cap H$:

 $\mathsf{aEDdeg}(\mathcal{S} \cap H) \;=\; \# \left\{ \mathsf{s} \in (\mathcal{S} \cap H)^{\mathbb{C}} \setminus \mathcal{S}_{\mathsf{sing}}^{\mathbb{C}} \,:\, \mathsf{t} - \mathsf{s} \perp \, T_{\mathsf{s}}(\mathcal{S} \cap H)^{\mathbb{C}} \right\}.$

Remark: numbers EDdeg(S) and $aEDdeg(S \cap H)$ differ in general.

Observation: $aEDdeg(S \cap H)$ gives an upper bound on the number of real critical points of $dist_t^H|_{(S \cap H) \setminus S_{sing}}$ for a generic $t \in H$.

Conjecturally, probability tensors have unique critical rank-one approximation Conjecturally, probability tensors have unique critical rank-one approximation $H = \left\{ \mathsf{T} \in \mathbb{R}^{n} : \sum_{i_{j}=1}^{n_{j}} t_{i_{1} \dots i_{d}} = 1 \right\} - \text{the affine span of } \Delta_{n-1}.$

Conjecture (Boege, Petrović and Sturmfels, 2021)

Conjecture (Boege, Petrović and Sturmfels, 2021)

Given any $\mathsf{T} \in \Delta_{n-1}$,

Conjecture (Boege, Petrović and Sturmfels, 2021)

Given any $T \in \Delta_{n-1}$, there is only 1 real critical point of dist^H_T,

Conjecture (Boege, Petrović and Sturmfels, 2021)

Given any $T \in \Delta_{n-1}$, there is only 1 real critical point of dist^H_T, namely the closest to it independent law $T^* \in \mathcal{M}_n \subset \mathcal{S}_n \cap H$.

Conjecture (Boege, Petrović and Sturmfels, 2021)

Given any $T \in \Delta_{n-1}$, there is only 1 real critical point of dist^H_T, namely the closest to it independent law $T^* \in \mathcal{M}_n \subset \mathcal{S}_n \cap H$.

Example (T.Boege, S.Petrović, B.Sturmfels. Marginal Independence Models)

Conjecture (Boege, Petrović and Sturmfels, 2021)

Given any $T \in \Delta_{n-1}$, there is only 1 real critical point of dist^H_T, namely the closest to it independent law $T^* \in \mathcal{M}_n \subset \mathcal{S}_n \cap H$.

Example (T.Boege, S.Petrović, B.Sturmfels. *Marginal Independence Models*) EDdeg $(S_{(2,2,2)}) = 6$,

Conjecture (Boege, Petrović and Sturmfels, 2021)

Given any $T \in \Delta_{n-1}$, there is only 1 real critical point of dist^H_T, namely the closest to it independent law $T^* \in \mathcal{M}_n \subset \mathcal{S}_n \cap H$.

Example (T.Boege, S.Petrović, B.Sturmfels. Marginal Independence Models) EDdeg($S_{(2,2,2)}$) = 6, some $T \in \Delta_{(2,2,2)-1}$ has 4 real critical rank-1 approximations (in $S_{(2,2,2)}$)

Conjecture (Boege, Petrović and Sturmfels, 2021)

Given any $T \in \Delta_{n-1}$, there is only 1 real critical point of dist^H_T, namely the closest to it independent law $T^* \in \mathcal{M}_n \subset \mathcal{S}_n \cap H$.

Example (T.Boege, S.Petrović, B.Sturmfels. Marginal Independence Models) $EDdeg(S_{(2,2,2)}) = 6$, some $T \in \Delta_{(2,2,2)-1}$ has 4 real critical rank-1 approximations (in $S_{(2,2,2)}$). However, $aEDdeg(S_{(2,2,2)} \cap H) = 17$

Conjecture (Boege, Petrović and Sturmfels, 2021)

Given any $T \in \Delta_{n-1}$, there is only 1 real critical point of dist^H_T, namely the closest to it independent law $T^* \in \mathcal{M}_n \subset \mathcal{S}_n \cap H$.

Example (T.Boege, S.Petrović, B.Sturmfels. Marginal Independence Models) $EDdeg(S_{(2,2,2)}) = 6$, some $T \in \Delta_{(2,2,2)-1}$ has 4 real critical rank-1 approximations (in $S_{(2,2,2)}$). However, $aEDdeg(S_{(2,2,2)} \cap H) = 17$ and $T^* \in \mathcal{M}_{(2,2,2)}$ is the only critical point of dist $_{T}^{H}$.

Conjecture (Boege, Petrović and Sturmfels, 2021)

Given any $T \in \Delta_{n-1}$, there is only 1 real critical point of dist^H_T, namely the closest to it independent law $T^* \in \mathcal{M}_n \subset \mathcal{S}_n \cap H$.

Example (T.Boege, S.Petrović, B.Sturmfels. Marginal Independence Models) $EDdeg(S_{(2,2,2)}) = 6$, some $T \in \Delta_{(2,2,2)-1}$ has 4 real critical rank-1 approximations (in $S_{(2,2,2)}$). However, $aEDdeg(S_{(2,2,2)} \cap H) = 17$ and $T^* \in \mathcal{M}_{(2,2,2)}$ is the only critical point of dist^H_T. Remark:

Conjecture (Boege, Petrović and Sturmfels, 2021)

Given any $T \in \Delta_{n-1}$, there is only 1 real critical point of dist^H_T, namely the closest to it independent law $T^* \in \mathcal{M}_n \subset \mathcal{S}_n \cap H$.

Example (T.Boege, S.Petrović, B.Sturmfels. Marginal Independence Models) EDdeg($S_{(2,2,2)}$) = 6, some $T \in \Delta_{(2,2,2)-1}$ has 4 real critical rank-1 approximations (in $S_{(2,2,2)}$). However, aEDdeg($S_{(2,2,2)} \cap H$) = 17 and $T^* \in \mathcal{M}_{(2,2,2)}$ is the only critical point of dist^H_T. Remark: conjecture is stated in a larger generality, when instead of $\mathcal{M}_{n} = S_{n} \cap \Delta_{n-1}$ and $S_{n} \cap H$

Conjecture (Boege, Petrović and Sturmfels, 2021)

Given any $T \in \Delta_{n-1}$, there is only 1 real critical point of dist^H_T, namely the closest to it independent law $T^* \in \mathcal{M}_n \subset \mathcal{S}_n \cap H$.

Example (T.Boege, S.Petrović, B.Sturmfels. Marginal Independence Models) EDdeg($S_{(2,2,2)}$) = 6, some $T \in \Delta_{(2,2,2)-1}$ has 4 real critical rank-1 approximations (in $S_{(2,2,2)}$). However, aEDdeg($S_{(2,2,2)} \cap H$) = 17 and $T^* \in \mathcal{M}_{(2,2,2)}$ is the only critical point of dist^H_T. Remark: conjecture is stated in a larger generality, when instead of $\mathcal{M}_n = S_n \cap \Delta_{n-1}$ and $S_n \cap H$ one can take any marginal independence model $\mathcal{M}_{\Sigma} \subset \Delta_{n-1}$ and its Zariski closure in H.

Part 2. Rank-one approximations of symmetric tensors

A tensor $T = (t_{i_1...i_d})_{i_j=1}^{n_j} \in \mathbb{R}^{(n,...,n)}$ is called symmetric,

A tensor $T = (t_{i_1...i_d})_{i_j=1}^{n_j} \in \mathbb{R}^{(n,...,n)}$ is called symmetric, if $t_{i_{\sigma_1}...i_{\sigma_d}} = t_{i_1...i_d}$ for any permutation σ on d letters.

A tensor $T = (t_{i_1...i_d})_{i_j=1}^{n_j} \in \mathbb{R}^{(n,...,n)}$ is called symmetric, if $t_{i_{\sigma_1}...i_{\sigma_d}} = t_{i_1...i_d}$ for any permutation σ on d letters.

The (sub)space space of symmetric tensors: $\text{Sym}^d(\mathbb{R}^n) \subset \mathbb{R}^{(n,...,n)}$.

A tensor $T = (t_{i_1...i_d})_{i_j=1}^{n_j} \in \mathbb{R}^{(n,...,n)}$ is called symmetric, if $t_{i_{\sigma_1}...i_{\sigma_d}} = t_{i_1...i_d}$ for any permutation σ on d letters. The (sub)space space of symmetric tensors: $\operatorname{Sym}^d(\mathbb{R}^n) \subset \mathbb{R}^{(n,...,n)}$.

The Veronese variety of symmetric rank-1 tensors:

A tensor $T = (t_{i_1...i_d})_{i_j=1}^{n_j} \in \mathbb{R}^{(n,...,n)}$ is called symmetric, if $t_{i_{\sigma_1}...i_{\sigma_d}} = t_{i_1...i_d}$ for any permutation σ on d letters. The (sub)space space of symmetric tensors: $\operatorname{Sym}^d(\mathbb{R}^n) \subset \mathbb{R}^{(n,...,n)}$. The Veronese variety of symmetric rank-1 tensors:

 $\mathcal{V}_{d,n} = \mathcal{S}_{(n,\dots,n)} \cap \operatorname{Sym}^{d}(\mathbb{R}^{n}) = \left\{ \lambda \, \mathsf{x} \otimes \dots \otimes \mathsf{x} \, : \, \lambda \in \mathbb{R}, \, \mathsf{x}^{j} \in \mathbb{S}^{n-1} \right\}$

A tensor $T = (t_{i_1...i_d})_{i_j=1}^{n_j} \in \mathbb{R}^{(n,...,n)}$ is called symmetric, if $t_{i_{\sigma_1}...i_{\sigma_d}} = t_{i_1...i_d}$ for any permutation σ on d letters. The (sub)space space of symmetric tensors: $\operatorname{Sym}^d(\mathbb{R}^n) \subset \mathbb{R}^{(n,...,n)}$. The Veronese variety of symmetric rank-1 tensors:

 $\mathcal{V}_{d,n} = \mathcal{S}_{(n,\dots,n)} \cap \operatorname{Sym}^{d}(\mathbb{R}^{n}) = \left\{ \lambda \, \mathsf{x} \otimes \dots \otimes \mathsf{x} \, : \, \lambda \in \mathbb{R}, \, \mathsf{x}^{j} \in \mathbb{S}^{n-1} \right\}$

Banach, 1938
A tensor $T = (t_{i_1...i_d})_{i_j=1}^{n_j} \in \mathbb{R}^{(n,...,n)}$ is called symmetric, if $t_{i_{\sigma_1}...i_{\sigma_d}} = t_{i_1...i_d}$ for any permutation σ on d letters. The (sub)space space of symmetric tensors: $\text{Sym}^d(\mathbb{R}^n) \subset \mathbb{R}^{(n,...,n)}$.

The Veronese variety of symmetric rank-1 tensors:

$$\mathcal{V}_{d,n} = \mathcal{S}_{(n,\dots,n)} \cap \operatorname{Sym}^d(\mathbb{R}^n) = \left\{ \lambda \, \mathrm{x} \otimes \dots \otimes \mathrm{x} \, : \, \lambda \in \mathbb{R}, \, \mathrm{x}^j \in \mathbb{S}^{n-1}
ight\}$$

Banach, 1938

Any symmetric tensor $T \in \text{Sym}^d(\mathbb{R}^n)$ admits a symmetric best rank-1 approximation $T^* \in \mathcal{V}_{d,n}$.

A tensor $T = (t_{i_1...i_d})_{i_j=1}^{n_j} \in \mathbb{R}^{(n,...,n)}$ is called symmetric, if $t_{i_{\sigma_1}...i_{\sigma_d}} = t_{i_1...i_d}$ for any permutation σ on d letters. The (sub)space space of symmetric tensors: $\operatorname{Sym}^d(\mathbb{R}^n) \subset \mathbb{R}^{(n,...,n)}$. The Veronese variety of symmetric rank-1 tensors:

$$\mathcal{V}_{d,n} = \mathcal{S}_{(n,\dots,n)} \cap \operatorname{Sym}^{d}(\mathbb{R}^{n}) = \{\lambda \times \otimes \dots \otimes \times : \lambda \in \mathbb{R}, \, \mathsf{x}^{J} \in \mathbb{S}^{n-1}\}$$

Banach, 1938

Any symmetric tensor $T \in \text{Sym}^{d}(\mathbb{R}^{n})$ admits a symmetric best rank-1 approximation $T^{*} \in \mathcal{V}_{d,n}$. In particular,

$$\|T - T^*\| = \min_{S \in \mathcal{V}_{d,n}} \|T - S\| = \min_{S \in \mathcal{S}_{(n,...,n)}} \|T - S\|$$

A tensor $T = (t_{i_1...i_d})_{i_j=1}^{n_j} \in \mathbb{R}^{(n,...,n)}$ is called symmetric, if $t_{i_{\sigma_1}...i_{\sigma_d}} = t_{i_1...i_d}$ for any permutation σ on d letters. The (sub)space space of symmetric tensors: $\operatorname{Sym}^d(\mathbb{R}^n) \subset \mathbb{R}^{(n,...,n)}$. The Veronese variety of symmetric rank-1 tensors:

$$\mathcal{V}_{d,n} = \mathcal{S}_{(n,\dots,n)} \cap \operatorname{Sym}^d(\mathbb{R}^n) = \left\{ \lambda \, \mathrm{x} \otimes \dots \otimes \mathrm{x} \, : \, \lambda \in \mathbb{R}, \, \mathrm{x}^j \in \mathbb{S}^{n-1}
ight\}$$

Banach, 1938

Any symmetric tensor $T \in \text{Sym}^{d}(\mathbb{R}^{n})$ admits a symmetric best rank-1 approximation $T^{*} \in \mathcal{V}_{d,n}$. In particular,

$$\|T - T^*\| = \min_{S \in \mathcal{V}_{d,n}} \|T - S\| = \min_{S \in \mathcal{S}_{(n,...,n)}} \|T - S\|$$

Remark:

A tensor $T = (t_{i_1...i_d})_{i_j=1}^{n_j} \in \mathbb{R}^{(n,...,n)}$ is called symmetric, if $t_{i_{\sigma_1}...i_{\sigma_d}} = t_{i_1...i_d}$ for any permutation σ on d letters. The (sub)space space of symmetric tensors: $\operatorname{Sym}^d(\mathbb{R}^n) \subset \mathbb{R}^{(n,...,n)}$. The Veronese variety of symmetric rank-1 tensors:

$$\mathcal{V}_{d,n} = \mathcal{S}_{(n,\dots,n)} \cap \operatorname{Sym}^d(\mathbb{R}^n) = \left\{ \lambda \, \mathrm{x} \otimes \dots \otimes \mathrm{x} \, : \, \lambda \in \mathbb{R}, \, \mathrm{x}^j \in \mathbb{S}^{n-1}
ight\}$$

Banach, 1938

Any symmetric tensor $T \in \text{Sym}^{d}(\mathbb{R}^{n})$ admits a symmetric best rank-1 approximation $T^{*} \in \mathcal{V}_{d,n}$. In particular,

$$\|T - T^*\| = \min_{S \in \mathcal{V}_{d,n}} \|T - S\| = \min_{S \in \mathcal{S}_{(n,...,n)}} \|T - S\|$$

Remark: (still) NP-hard to decide if T^* is a solution, when $d \ge 3$.

Critical symmetric rank-1 approximations to $\mathsf{T} \in \mathsf{Sym}^d(\mathbb{R}^n)$

Critical symmetric rank-1 approximations to $T \in Sym^d(\mathbb{R}^n)$ are critical points of the (squared) distance function

$$\begin{split} & \text{dist}_{\mathsf{T}}:\mathcal{V}_{d,n} \ \rightarrow \ \mathbb{R}, \\ & \mathsf{S} \ = \ \lambda \, \mathsf{x} \otimes \cdots \otimes \mathsf{x} \ \mapsto \ \|\mathsf{T} - \mathsf{S}\|^2 \ = \ \|\mathsf{T}\|^2 - 2\lambda \langle \mathsf{T}, \mathsf{x} \otimes \cdots \otimes \mathsf{x} \rangle + \lambda^2, \end{split}$$

Critical symmetric rank-1 approximations to $T \in Sym^d(\mathbb{R}^n)$ are critical points of the (squared) distance function

$$\begin{split} & \text{dist}_{\mathsf{T}}: \mathcal{V}_{d,n} \to \mathbb{R}, \\ \mathsf{S} &= \lambda \times \otimes \cdots \otimes \times \mapsto \|\mathsf{T} - \mathsf{S}\|^2 = \|\mathsf{T}\|^2 - 2\lambda \langle \mathsf{T}, \mathsf{x} \otimes \cdots \otimes \mathsf{x} \rangle + \lambda^2, \\ & \text{i.e., such } \lambda \mathsf{x} \otimes \cdots \otimes \mathsf{x} \in \mathcal{V}_{d,n} \end{split}$$

Critical symmetric rank-1 approximations to $T \in Sym^d(\mathbb{R}^n)$ are critical points of the (squared) distance function

$$\begin{split} & \text{dist}_{\mathsf{T}}: \mathcal{V}_{d,n} \to \mathbb{R}, \\ \mathsf{S} &= \lambda \times \otimes \cdots \otimes \times \mapsto \|\mathsf{T} - \mathsf{S}\|^2 = \|\mathsf{T}\|^2 - 2\lambda \langle \mathsf{T}, \mathsf{x} \otimes \cdots \otimes \mathsf{x} \rangle + \lambda^2, \\ & \text{i.e., such } \lambda \mathsf{x} \otimes \cdots \otimes \mathsf{x} \in \mathcal{V}_{d,n} \text{ that satisfy } \frac{1}{d} \nabla_{\mathsf{x}} f_{\mathsf{T}}(\mathsf{x}) = \lambda \mathsf{x}, \end{split}$$

Critical symmetric rank-1 approximations to $T \in Sym^d(\mathbb{R}^n)$ are critical points of the (squared) distance function

 $\begin{aligned} \operatorname{dist}_{\mathsf{T}} : \mathcal{V}_{d,n} &\to \mathbb{R}, \\ \mathsf{S} &= \lambda \times \otimes \cdots \otimes \times &\mapsto \|\mathsf{T} - \mathsf{S}\|^2 \ = \ \|\mathsf{T}\|^2 - 2\lambda \langle \mathsf{T}, \times \otimes \cdots \otimes \times \rangle + \lambda^2, \\ \text{i.e., such } \lambda \times \otimes \cdots \otimes \times \in \mathcal{V}_{d,n} \text{ that satisfy } \frac{1}{d} \nabla_{\mathsf{X}} f_{\mathsf{T}}(\mathsf{X}) \ = \ \lambda \times, \text{ where} \\ f_{\mathsf{T}}(\mathsf{X}) \ = \ \langle \mathsf{T}, \mathsf{X} \otimes \cdots \otimes \mathsf{X} \rangle \ = \ \sum_{i_i=1}^{n_j} t_{i_1 \dots i_d} x_{i_1} \dots x_{i_d} \end{aligned}$

Critical symmetric rank-1 approximations to $T \in Sym^d(\mathbb{R}^n)$ are critical points of the (squared) distance function

 $\begin{aligned} \operatorname{dist}_{\mathsf{T}} : \mathcal{V}_{d,n} &\to \mathbb{R}, \\ \mathsf{S} &= \lambda \times \otimes \cdots \otimes \times &\mapsto \|\mathsf{T} - \mathsf{S}\|^2 \ = \ \|\mathsf{T}\|^2 - 2\lambda \langle \mathsf{T}, \times \otimes \cdots \otimes \mathsf{x} \rangle + \lambda^2, \\ \text{i.e., such } \lambda \times \otimes \cdots \otimes \mathsf{x} \in \mathcal{V}_{d,n} \text{ that satisfy } \frac{1}{d} \nabla_{\mathsf{x}} f_{\mathsf{T}}(\mathsf{x}) \ = \ \lambda \times, \text{ where} \\ f_{\mathsf{T}}(\mathsf{x}) \ = \ \langle \mathsf{T}, \mathsf{x} \otimes \cdots \otimes \mathsf{x} \rangle \ = \ \sum_{i_j=1}^{n_j} t_{i_1 \dots i_d} x_{i_1} \dots x_{i_d} \end{aligned}$

is the homogeneous polynomial uniquely associated to T.

Critical symmetric rank-1 approximations to $T \in Sym^d(\mathbb{R}^n)$ are critical points of the (squared) distance function

 $\begin{aligned} \operatorname{dist}_{\mathsf{T}} : \mathcal{V}_{d,n} &\to \mathbb{R}, \\ \mathsf{S} &= \lambda \times \otimes \cdots \otimes \times &\mapsto \|\mathsf{T} - \mathsf{S}\|^2 \ = \ \|\mathsf{T}\|^2 - 2\lambda \langle \mathsf{T}, \times \otimes \cdots \otimes \mathsf{x} \rangle + \lambda^2, \\ \text{i.e., such } \lambda \times \otimes \cdots \otimes \mathsf{x} \in \mathcal{V}_{d,n} \text{ that satisfy } \frac{1}{d} \nabla_{\mathsf{x}} f_{\mathsf{T}}(\mathsf{x}) \ = \ \lambda \times, \text{ where} \\ f_{\mathsf{T}}(\mathsf{x}) \ = \ \langle \mathsf{T}, \mathsf{x} \otimes \cdots \otimes \mathsf{x} \rangle \ = \ \sum_{i_j=1}^{n_j} t_{i_1 \dots i_d} x_{i_1} \dots x_{i_d} \end{aligned}$

is the homogeneous polynomial uniquely associated to T.

Characterization :

Critical symmetric rank-1 approximations to $T \in Sym^d(\mathbb{R}^n)$ are critical points of the (squared) distance function

 $\begin{aligned} \text{dist}_{\mathsf{T}} : \mathcal{V}_{d,n} &\to \mathbb{R}, \\ \mathsf{S} &= \lambda \times \otimes \cdots \otimes \times &\mapsto \|\mathsf{T} - \mathsf{S}\|^2 \ = \ \|\mathsf{T}\|^2 - 2\lambda \langle \mathsf{T}, \mathsf{X} \otimes \cdots \otimes \mathsf{x} \rangle + \lambda^2, \\ \text{i.e., such } \lambda \times \otimes \cdots \otimes \mathsf{x} \in \mathcal{V}_{d,n} \text{ that satisfy } \frac{1}{d} \nabla_{\mathsf{x}} f_{\mathsf{T}}(\mathsf{x}) \ = \ \lambda \times, \text{ where} \\ f_{\mathsf{T}}(\mathsf{x}) \ = \ \langle \mathsf{T}, \mathsf{x} \otimes \cdots \otimes \mathsf{x} \rangle \ = \ \sum_{i_i=1}^{n_j} t_{i_1 \dots i_d} x_{i_1} \dots x_{i_d} \end{aligned}$

is the homogeneous polynomial uniquely associated to T.

Characterization : x is a critical point of f_{T} restricted to \mathbb{S}^{n-1} with critical value $\lambda := f_{\mathsf{T}}(\mathsf{x})$

Critical symmetric rank-1 approximations to $T \in \text{Sym}^d(\mathbb{R}^n)$ are critical points of the (squared) distance function

 $\begin{aligned} \text{dist}_{\mathsf{T}} : \mathcal{V}_{d,n} &\to \mathbb{R}, \\ \mathsf{S} &= \lambda \times \otimes \cdots \otimes \times \mapsto \|\mathsf{T} - \mathsf{S}\|^2 = \|\mathsf{T}\|^2 - 2\lambda \langle \mathsf{T}, \times \otimes \cdots \otimes \times \rangle + \lambda^2, \\ \text{i.e., such } \lambda \times \otimes \cdots \otimes \times \in \mathcal{V}_{d,n} \text{ that satisfy } \frac{1}{d} \nabla_{\mathsf{X}} f_{\mathsf{T}}(\mathsf{X}) &= \lambda \times, \text{ where} \\ f_{\mathsf{T}}(\mathsf{X}) &= \langle \mathsf{T}, \mathsf{X} \otimes \cdots \otimes \mathsf{X} \rangle = \sum_{i_i=1}^{n_j} t_{i_1 \dots i_d} x_{i_1} \dots x_{i_d} \end{aligned}$

is the homogeneous polynomial uniquely associated to T.

 $\begin{array}{|c|} \hline \text{Characterization} &: x \text{ is a critical point of } f_{\mathsf{T}} \text{ restricted to } \mathbb{S}^{n-1} \\ \text{with critical value } \lambda &:= f_{\mathsf{T}}(x) \text{ iff } \lambda x \otimes \cdots \otimes x \in \mathcal{V}_{d,n} \text{ is a critical rank-1 approximation to } \mathsf{T} \in \operatorname{Sym}^{d}(\mathbb{R}^{n}). \end{array}$

Eigenvectors of tensors d = 2: x is a critical point of $f_T(x) = x^T T x$ on S^{n-1} with value $\lambda = f_T(x)$

d = 2: x is a critical point of $f_T(x) = x^T T x$ on \mathbb{S}^{n-1} with value $\lambda = f_T(x)$ iff $Tx = \lambda x$ (x is an eigenvector of T with eigenvalue λ). Definition

d = 2: x is a critical point of $f_T(x) = x^T T x$ on \mathbb{S}^{n-1} with value $\lambda = f_T(x)$ iff $Tx = \lambda x$ (x is an eigenvector of T with eigenvalue λ). Definition

An eigenvector of a tensor $T \in \mathbb{R}^{(n,...,n)}$ is a vector $x \in \mathbb{S}^{n-1}$ s.t.

n

d = 2: x is a critical point of $f_T(x) = x^T T x$ on \mathbb{S}^{n-1} with value $\lambda = f_T(x)$ iff $T x = \lambda x$ (x is an eigenvector of T with eigenvalue λ). Definition

An eigenvector of a tensor $T \in \mathbb{R}^{(n,...,n)}$ is a vector $x \in \mathbb{S}^{n-1}$ s.t.

$$\mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1},\ldots,\mathsf{x}^{d}) = \sum_{i_{j}=1} t_{i_{1}\ldots i_{d}} \mathsf{x}^{1}_{i_{1}}\ldots \mathsf{x}^{d}_{i_{d}},$$
$$\nabla_{\mathsf{x}^{1}}\mathcal{F}_{\mathsf{T}}(\mathsf{x},\ldots,\mathsf{x}) = \left(\sum_{i_{j}=1}^{n} t_{i_{2}\ldots i_{d}} \mathsf{x}_{i_{2}}\ldots \mathsf{x}_{i_{d}}\right)_{i=1}^{n}$$

d = 2: x is a critical point of $f_T(x) = x^T T x$ on \mathbb{S}^{n-1} with value $\lambda = f_T(x)$ iff $T x = \lambda x$ (x is an eigenvector of T with eigenvalue λ). Definition

An eigenvector of a tensor $T \in \mathbb{R}^{(n,...,n)}$ is a vector $x \in \mathbb{S}^{n-1}$ s.t.

$$\mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1},\ldots,\mathsf{x}^{d}) = \sum_{i_{j}=1}^{n} t_{i_{1}\ldots i_{d}} \mathsf{x}_{i_{1}}^{1}\ldots \mathsf{x}_{i_{d}}^{d},$$

$$\nabla_{\mathsf{x}^{1}}\mathcal{F}_{\mathsf{T}}(\mathsf{x},\ldots,\mathsf{x}) = \left(\sum_{i_{j}=1}^{n} t_{i_{2}\ldots i_{d}} \mathsf{x}_{i_{2}}\ldots \mathsf{x}_{i_{d}}\right)_{i=1}^{n}$$

Then $\lambda = \mathcal{F}_T(x, \dots, x) = f_T(x)$ is the associated eigenvalue of T.

d = 2: x is a critical point of $f_T(x) = x^T T x$ on \mathbb{S}^{n-1} with value $\lambda = f_T(x)$ iff $T x = \lambda x$ (x is an eigenvector of T with eigenvalue λ). Definition

An eigenvector of a tensor $T \in \mathbb{R}^{(n,...,n)}$ is a vector $x \in \mathbb{S}^{n-1}$ s.t.

$$\mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1},\ldots,\mathsf{x}^{d}) = \sum_{i_{j}=1}^{n} t_{i_{1}\ldots i_{d}} x_{i_{1}}^{1}\ldots x_{i_{d}}^{d},$$

$$\nabla_{\mathsf{x}^{1}}\mathcal{F}_{\mathsf{T}}(\mathsf{x},\ldots,\mathsf{x}) = \left(\sum_{i_{j}=1}^{n} t_{i_{2}\ldots i_{d}} x_{i_{2}}\ldots x_{i_{d}}\right)_{i=1}^{n}$$

Then $\lambda = \mathcal{F}_T(x, ..., x) = f_T(x)$ is the associated eigenvalue of T. If $T \in Sym^d(\mathbb{R}^n)$ is symmetric,

d = 2: x is a critical point of $f_T(x) = x^T T x$ on \mathbb{S}^{n-1} with value $\lambda = f_T(x)$ iff $T x = \lambda x$ (x is an eigenvector of T with eigenvalue λ). Definition

An eigenvector of a tensor $T \in \mathbb{R}^{(n,...,n)}$ is a vector $x \in \mathbb{S}^{n-1}$ s.t.

$$\mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1},\ldots,\mathsf{x}^{d}) = \sum_{i_{j}=1}^{n} t_{i_{1}\ldots i_{d}} x_{i_{1}}^{1}\ldots x_{i_{d}}^{d},$$

$$\nabla_{\mathsf{x}^{1}}\mathcal{F}_{\mathsf{T}}(\mathsf{x},\ldots,\mathsf{x}) = \left(\sum_{i_{j}=1}^{n} t_{i_{2}\ldots i_{d}} x_{i_{2}}\ldots x_{i_{d}}\right)_{i=1}^{n}$$

Then $\lambda = \mathcal{F}_{\mathsf{T}}(\mathsf{x}, \ldots, \mathsf{x}) = f_{\mathsf{T}}(\mathsf{x})$ is the associated eigenvalue of T . If $\mathsf{T} \in \mathsf{Sym}^d(\mathbb{R}^n)$ is symmetric, to be an eigenvector for x means to be a critical point of the restriction of f_{T} to \mathbb{S}^{n-1} ,

d = 2: x is a critical point of $f_T(x) = x^T T x$ on \mathbb{S}^{n-1} with value $\lambda = f_T(x)$ iff $T x = \lambda x$ (x is an eigenvector of T with eigenvalue λ). Definition

An eigenvector of a tensor $T \in \mathbb{R}^{(n,...,n)}$ is a vector $x \in \mathbb{S}^{n-1}$ s.t.

$$\mathcal{F}_{\mathsf{T}}(\mathsf{x}^{1},\ldots,\mathsf{x}^{d}) = \sum_{i_{j}=1}^{n} t_{i_{1}\ldots i_{d}} x_{i_{1}}^{1}\ldots x_{i_{d}}^{d},$$

$$\nabla_{\mathsf{x}^{1}}\mathcal{F}_{\mathsf{T}}(\mathsf{x},\ldots,\mathsf{x}) = \left(\sum_{i_{j}=1}^{n} t_{i_{2}\ldots i_{d}} x_{i_{2}}\ldots x_{i_{d}}\right)_{i=1}^{n}$$

Then $\lambda = \mathcal{F}_{\mathsf{T}}(\mathsf{x}, \ldots, \mathsf{x}) = f_{\mathsf{T}}(\mathsf{x})$ is the associated eigenvalue of T . If $\mathsf{T} \in \mathsf{Sym}^d(\mathbb{R}^n)$ is symmetric, to be an eigenvector for x means to be a critical point of the restriction of f_{T} to \mathbb{S}^{n-1} , that is,

$$\frac{1}{d}\nabla_{\mathsf{x}}f_{\mathsf{T}}(\mathsf{x}) = \lambda \mathsf{x}.$$

Eigenvectors $x \in \mathbb{S}^{n-1}$ are solutions to the system

Eigenvectors $x \in \mathbb{S}^{n-1}$ are solutions to the system

$$(*) \quad \operatorname{rank} \begin{pmatrix} \sum_{i_j=1}^n t_{1i_2\dots i_d} x_{i_2}\dots x_{i_d} & \dots & \sum_{i_j=1}^n t_{ni_2\dots i_d} x_{i_2}\dots x_{i_d} \\ x_1 & \dots & x_n \end{pmatrix} \leq 1.$$

Eigenvectors $\mathsf{x} \in \mathbb{S}^{n-1}$ are solutions to the system

$$(*) \quad \operatorname{rank} \begin{pmatrix} \sum_{i_j=1}^n t_{1i_2\dots i_d} x_{i_2}\dots x_{i_d} & \dots & \sum_{i_j=1}^n t_{ni_2\dots i_d} x_{i_2}\dots x_{i_d} \\ x_1 & \dots & x_n \end{pmatrix} \leq 1.$$

An eigenpoint of $T \in \mathbb{R}^{(n,...,n)}$ is any $[x] \in \mathbb{P}^{n-1}_{\mathbb{C}}$ that satisfies (*).

Eigenvectors $\mathbf{x} \in \mathbb{S}^{n-1}$ are solutions to the system

(*) rank
$$\begin{pmatrix} \sum_{i_j=1}^n t_{1i_2...i_d} x_{i_2} \dots x_{i_d} & \dots & \sum_{i_j=1}^n t_{ni_2...i_d} x_{i_2} \dots x_{i_d} \\ x_1 & \dots & x_n \end{pmatrix} \leq 1.$$

An eigenpoint of $T \in \mathbb{R}^{(n,...,n)}$ is any $[x] \in \mathbb{P}^{n-1}_{\mathbb{C}}$ that satisfies (*). The eigenconfiguration of T is the variety of its eigenpoints.

Eigenvectors $\mathsf{x} \in \mathbb{S}^{n-1}$ are solutions to the system

(*) rank
$$\begin{pmatrix} \sum_{i_j=1}^n t_{1i_2...i_d} x_{i_2} \dots x_{i_d} & \dots & \sum_{i_j=1}^n t_{ni_2...i_d} x_{i_2} \dots x_{i_d} \\ x_1 & \dots & x_n \end{pmatrix} \leq 1.$$

An eigenpoint of $T \in \mathbb{R}^{(n,...,n)}$ is any $[x] \in \mathbb{P}^{n-1}_{\mathbb{C}}$ that satisfies (*). The eigenconfiguration of T is the variety of its eigenpoints.

Cartwright and Sturmfels, 2013

Eigenvectors $x \in \mathbb{S}^{n-1}$ are solutions to the system

$$(*) \quad \operatorname{rank} \begin{pmatrix} \sum_{i_j=1}^n t_{1i_2\dots i_d} x_{i_2}\dots x_{i_d} & \dots & \sum_{i_j=1}^n t_{ni_2\dots i_d} x_{i_2}\dots x_{i_d} \\ x_1 & \dots & x_n \end{pmatrix} \leq 1.$$

An eigenpoint of $T \in \mathbb{R}^{(n,...,n)}$ is any $[x] \in \mathbb{P}^{n-1}_{\mathbb{C}}$ that satisfies (*). The eigenconfiguration of T is the variety of its eigenpoints.

Cartwright and Sturmfels, 2013

A generic (a generic symmetric) tensor T $\in \mathbb{R}^{(n,...,n)}$

Eigenvectors $\mathbf{x} \in \mathbb{S}^{n-1}$ are solutions to the system

$$(*) \quad \operatorname{rank} \begin{pmatrix} \sum_{i_j=1}^n t_{1i_2\dots i_d} x_{i_2}\dots x_{i_d} & \dots & \sum_{i_j=1}^n t_{ni_2\dots i_d} x_{i_2}\dots x_{i_d} \\ x_1 & \dots & x_n \end{pmatrix} \leq 1.$$

An eigenpoint of $T \in \mathbb{R}^{(n,...,n)}$ is any $[x] \in \mathbb{P}^{n-1}_{\mathbb{C}}$ that satisfies (*). The eigenconfiguration of T is the variety of its eigenpoints.

Cartwright and Sturmfels, 2013

A generic (a generic symmetric) tensor T
$$\in \mathbb{R}^{(n,\dots,n)}$$
 has $ev(d,n) = \frac{(d-1)^n - 1}{d-2}$

Eigenvectors $\mathsf{x} \in \mathbb{S}^{n-1}$ are solutions to the system

(*) rank
$$\begin{pmatrix} \sum_{i_j=1}^n t_{1i_2...i_d} x_{i_2} \dots x_{i_d} & \dots & \sum_{i_j=1}^n t_{ni_2...i_d} x_{i_2} \dots x_{i_d} \\ x_1 & \dots & x_n \end{pmatrix} \leq 1.$$

An eigenpoint of $T \in \mathbb{R}^{(n,...,n)}$ is any $[x] \in \mathbb{P}^{n-1}_{\mathbb{C}}$ that satisfies (*). The eigenconfiguration of T is the variety of its eigenpoints.

Cartwright and Sturmfels, 2013

A generic (a generic symmetric) tensor
$$T \in \mathbb{R}^{(n,\dots,n)}$$
 has $ev(d, n) = \frac{(d-1)^n - 1}{d-2}$ eigenpoints in $\mathbb{P}^{n-1}_{\mathbb{C}}$.

Eigenvectors $x \in S^{n-1}$ are solutions to the system

(*) rank
$$\begin{pmatrix} \sum_{i_j=1}^n t_{1i_2...i_d} x_{i_2} \dots x_{i_d} & \dots & \sum_{i_j=1}^n t_{ni_2...i_d} x_{i_2} \dots x_{i_d} \\ x_1 & \dots & x_n \end{pmatrix} \leq 1.$$

An eigenpoint of $T \in \mathbb{R}^{(n,...,n)}$ is any $[x] \in \mathbb{P}^{n-1}_{\mathbb{C}}$ that satisfies (*). The eigenconfiguration of T is the variety of its eigenpoints.

Cartwright and Sturmfels, 2013

A generic (a generic symmetric) tensor
$$T \in \mathbb{R}^{(n,\dots,n)}$$
 has $ev(d, n) = \frac{(d-1)^n - 1}{d-2}$ eigenpoints in $\mathbb{P}^{n-1}_{\mathbb{C}}$.

 $ev(d, n) = EDdeg(\mathcal{V}_{d,n})$ is the ED degree of the Veronese variety.

Eigenvectors $x \in S^{n-1}$ are solutions to the system

(*) rank
$$\begin{pmatrix} \sum_{i_j=1}^n t_{1i_2...i_d} x_{i_2} \dots x_{i_d} & \dots & \sum_{i_j=1}^n t_{ni_2...i_d} x_{i_2} \dots x_{i_d} \\ x_1 & \dots & x_n \end{pmatrix} \leq 1.$$

An eigenpoint of $T \in \mathbb{R}^{(n,...,n)}$ is any $[x] \in \mathbb{P}^{n-1}_{\mathbb{C}}$ that satisfies (*). The eigenconfiguration of T is the variety of its eigenpoints.

Cartwright and Sturmfels, 2013

A generic (a generic symmetric) tensor
$$T \in \mathbb{R}^{(n,\dots,n)}$$
 has $ev(d, n) = \frac{(d-1)^n - 1}{d-2}$ eigenpoints in $\mathbb{P}^{n-1}_{\mathbb{C}}$.

 $ev(d, n) = EDdeg(\mathcal{V}_{d,n})$ is the ED degree of the Veronese variety. Eigenpoints of a generic T are *fixed points* of the endomorphism (holomorphic map) $\psi_{\mathsf{T}} : \mathbb{P}^{n-1}_{\mathbb{C}} \to \mathbb{P}^{n-1}_{\mathbb{C}}$, $[\mathsf{x}] \mapsto [\nabla_{\mathsf{x}^1} \mathcal{F}_{\mathsf{T}}(\mathsf{x}, \dots, \mathsf{x})]$.

Eigenvectors $x \in S^{n-1}$ are solutions to the system

$$(*) \quad \operatorname{rank} \begin{pmatrix} \sum_{i_j=1}^n t_{1i_2\ldots i_d} x_{i_2}\ldots x_{i_d} & \ldots & \sum_{i_j=1}^n t_{ni_2\ldots i_d} x_{i_2}\ldots x_{i_d} \\ x_1 & \ldots & x_n \end{pmatrix} \leq 1.$$

An eigenpoint of $T \in \mathbb{R}^{(n,...,n)}$ is any $[x] \in \mathbb{P}^{n-1}_{\mathbb{C}}$ that satisfies (*). The eigenconfiguration of T is the variety of its eigenpoints.

Cartwright and Sturmfels, 2013

A generic (a generic symmetric) tensor
$$T \in \mathbb{R}^{(n,\dots,n)}$$
 has $ev(d, n) = \frac{(d-1)^n - 1}{d-2}$ eigenpoints in $\mathbb{P}^{n-1}_{\mathbb{C}}$.

 $ev(d, n) = EDdeg(\mathcal{V}_{d,n})$ is the ED degree of the Veronese variety.

Eigenpoints of a generic T are *fixed points* of the endomorphism (holomorphic map) $\psi_{\mathsf{T}} : \mathbb{P}^{n-1}_{\mathbb{C}} \to \mathbb{P}^{n-1}_{\mathbb{C}}$, $[\mathsf{x}] \mapsto [\nabla_{\mathsf{x}^1} \mathcal{F}_{\mathsf{T}}(\mathsf{x}, \ldots, \mathsf{x})]$. Fornaess and Sibony, 1994 :
Counting eigenpoints

Eigenvectors $x \in S^{n-1}$ are solutions to the system

$$(*) \quad \operatorname{rank} \begin{pmatrix} \sum_{i_j=1}^n t_{1i_2\ldots i_d} x_{i_2}\ldots x_{i_d} & \ldots & \sum_{i_j=1}^n t_{ni_2\ldots i_d} x_{i_2}\ldots x_{i_d} \\ x_1 & \ldots & x_n \end{pmatrix} \leq 1.$$

An eigenpoint of $T \in \mathbb{R}^{(n,...,n)}$ is any $[x] \in \mathbb{P}^{n-1}_{\mathbb{C}}$ that satisfies (*). The eigenconfiguration of T is the variety of its eigenpoints.

Cartwright and Sturmfels, 2013

A generic (a generic symmetric) tensor
$$T \in \mathbb{R}^{(n,\dots,n)}$$
 has $ev(d, n) = \frac{(d-1)^n - 1}{d-2}$ eigenpoints in $\mathbb{P}^{n-1}_{\mathbb{C}}$.

 $ev(d, n) = EDdeg(\mathcal{V}_{d,n})$ is the ED degree of the Veronese variety.

Eigenpoints of a generic T are *fixed points* of the endomorphism (holomorphic map) $\psi_{\mathsf{T}} : \mathbb{P}^{n-1}_{\mathbb{C}} \to \mathbb{P}^{n-1}_{\mathbb{C}}$, $[\mathsf{x}] \mapsto [\nabla_{\mathsf{x}^1} \mathcal{F}_{\mathsf{T}}(\mathsf{x}, \ldots, \mathsf{x})]$. Fornaess and Sibony, 1994: a generic ψ_{T} has $\mathrm{ev}(d, n)$ fixed points.

For a generic $\mathsf{T} \in \mathbb{R}^{(n,...,n)}$

For a generic $T \in \mathbb{R}^{(n,...,n)}$ the number of eigenpoints in $\mathbb{P}^{n-1}_{\mathbb{R}}$ is upper-bounded by $ev(d, n) = \frac{(d-1)^n - 1}{d-2}$. In particular:

For a generic $T \in \mathbb{R}^{(n,...,n)}$ the number of eigenpoints in $\mathbb{P}^{n-1}_{\mathbb{R}}$ is upper-bounded by $ev(d, n) = \frac{(d-1)^n - 1}{d-2}$.

In particular: the restriction of a generic form $f \in \mathbb{R}[x_1, \ldots, x_n]$ of degree d to the sphere \mathbb{S}^{n-1}

For a generic $T \in \mathbb{R}^{(n,...,n)}$ the number of eigenpoints in $\mathbb{P}^{n-1}_{\mathbb{R}}$ is upper-bounded by $ev(d, n) = \frac{(d-1)^n - 1}{d-2}$.

In particular: the restriction of a generic form $f \in \mathbb{R}[x_1, \ldots, x_n]$ of degree d to the sphere \mathbb{S}^{n-1} has at most $2\frac{(d-1)^n-1}{d-2}$ critical points.

For a generic $T \in \mathbb{R}^{(n,...,n)}$ the number of eigenpoints in $\mathbb{P}^{n-1}_{\mathbb{R}}$ is upper-bounded by $ev(d, n) = \frac{(d-1)^n - 1}{d-2}$.

In particular: the restriction of a generic form $f \in \mathbb{R}[x_1, \ldots, x_n]$ of degree *d* to the sphere \mathbb{S}^{n-1} has at most $2\frac{(d-1)^n-1}{d-2}$ critical points.

A generic matrix $\mathsf{T} \in \mathbb{R}^n \otimes \mathbb{R}^n$ has *n* eigenvalues (ev(2, *n*) = *n*).

For a generic $T \in \mathbb{R}^{(n,...,n)}$ the number of eigenpoints in $\mathbb{P}^{n-1}_{\mathbb{R}}$ is upper-bounded by $ev(d, n) = \frac{(d-1)^n - 1}{d-2}$. In particular: the restriction of a generic form $f \in \mathbb{R}[x_1, \ldots, x_n]$ of

degree d to the sphere \mathbb{S}^{n-1} has at most $2\frac{(d-1)^n-1}{d-2}$ critical points.

A generic matrix $T \in \mathbb{R}^n \otimes \mathbb{R}^n$ has *n* eigenvalues (ev(2, *n*) = *n*). If T is symmetric, all eigenvalues, eigenvectors, eigenpoints are real.

For a generic $T \in \mathbb{R}^{(n,...,n)}$ the number of eigenpoints in $\mathbb{P}_{\mathbb{R}}^{n-1}$ is upper-bounded by $\operatorname{ev}(d, n) = \frac{(d-1)^n - 1}{d-2}$. In particular: the restriction of a generic form $f \in \mathbb{R}[x_1, \ldots, x_n]$ of degree d to the sphere \mathbb{S}^{n-1} has at most $2\frac{(d-1)^n - 1}{d-2}$ critical points. A generic matrix $T \in \mathbb{R}^n \otimes \mathbb{R}^n$ has n eigenvalues ($\operatorname{ev}(2, n) = n$). If T is symmetric, all eigenvalues, eigenvectors, eigenpoints are real. A binary form $f \in \mathbb{R}[x_1, x_2]$ with $d = \operatorname{deg}(f)$ distinct real roots has $2d = 2\operatorname{ev}(d, 2)$ critical points on \mathbb{S}^1 .

For a generic $T \in \mathbb{R}^{(n,...,n)}$ the number of eigenpoints in $\mathbb{P}_{\mathbb{R}}^{n-1}$ is upper-bounded by $\operatorname{ev}(d, n) = \frac{(d-1)^n - 1}{d-2}$. In particular: the restriction of a generic form $f \in \mathbb{R}[x_1, \ldots, x_n]$ of degree d to the sphere \mathbb{S}^{n-1} has at most $2\frac{(d-1)^n - 1}{d-2}$ critical points. A generic matrix $T \in \mathbb{R}^n \otimes \mathbb{R}^n$ has n eigenvalues ($\operatorname{ev}(2, n) = n$). If T is symmetric, all eigenvalues, eigenvectors, eigenpoints are real. A binary form $f \in \mathbb{R}[x_1, x_2]$ with $d = \operatorname{deg}(f)$ distinct real roots has $2d = 2\operatorname{ev}(d, 2)$ critical points on \mathbb{S}^1 .

Abo, Seigal and Sturmfels, 2015:

For a generic $T \in \mathbb{R}^{(n,...,n)}$ the number of eigenpoints in $\mathbb{P}_{\mathbb{R}}^{n-1}$ is upper-bounded by $\operatorname{ev}(d, n) = \frac{(d-1)^n - 1}{d-2}$. In particular: the restriction of a generic form $f \in \mathbb{R}[x_1, \ldots, x_n]$ of degree d to the sphere \mathbb{S}^{n-1} has at most $2\frac{(d-1)^n - 1}{d-2}$ critical points. A generic matrix $T \in \mathbb{R}^n \otimes \mathbb{R}^n$ has n eigenvalues ($\operatorname{ev}(2, n) = n$). If T is symmetric, all eigenvalues, eigenvectors, eigenpoints are real. A binary form $f \in \mathbb{R}[x_1, x_2]$ with $d = \operatorname{deg}(f)$ distinct real roots has $2d = 2\operatorname{ev}(d, 2)$ critical points on \mathbb{S}^1 .

Abo, Seigal and Sturmfels, 2015: the product $f \in \mathbb{R}[x_1, x_2, x_3]$ of d general linear forms has $2(d^2 - d + 1) = 2 \operatorname{ev}(d, 3)$ crit. pts. on \mathbb{S}^2 .

For a generic $T \in \mathbb{R}^{(n,...,n)}$ the number of eigenpoints in $\mathbb{P}_{\mathbb{R}}^{n-1}$ is upper-bounded by $\operatorname{ev}(d, n) = \frac{(d-1)^n - 1}{d-2}$. In particular: the restriction of a generic form $f \in \mathbb{R}[x_1, \ldots, x_n]$ of degree d to the sphere \mathbb{S}^{n-1} has at most $2\frac{(d-1)^n - 1}{d-2}$ critical points. A generic matrix $T \in \mathbb{R}^n \otimes \mathbb{R}^n$ has n eigenvalues ($\operatorname{ev}(2, n) = n$). If T is symmetric, all eigenvalues, eigenvectors, eigenpoints are real. A binary form $f \in \mathbb{R}[x_1, x_2]$ with $d = \operatorname{deg}(f)$ distinct real roots has

A binary form $r \in \mathbb{R}[x_1, x_2]$ with $d = \deg(r)$ distinct real roots has $2d = 2 \operatorname{ev}(d, 2)$ critical points on \mathbb{S}^1 .

Abo, Seigal and Sturmfels, 2015: the product $f \in \mathbb{R}[x_1, x_2, x_3]$ of d general linear forms has $2(d^2 - d + 1) = 2 \operatorname{ev}(d, 3)$ crit. pts. on \mathbb{S}^2 .

Conjecture (Abo, Seigal and Sturmfels, 2015)

For a generic $T \in \mathbb{R}^{(n,...,n)}$ the number of eigenpoints in $\mathbb{P}^{n-1}_{\mathbb{R}}$ is upper-bounded by $\operatorname{ev}(d, n) = \frac{(d-1)^n - 1}{d-2}$. In particular: the restriction of a generic form $f \in \mathbb{R}[x_1, \ldots, x_n]$ of degree d to the sphere \mathbb{S}^{n-1} has at most $2\frac{(d-1)^n - 1}{d-2}$ critical points. A generic matrix $T \in \mathbb{R}^n \otimes \mathbb{R}^n$ has n eigenvalues ($\operatorname{ev}(2, n) = n$). If T is symmetric, all eigenvalues, eigenvectors, eigenpoints are real. A binary form $f \in \mathbb{R}[x_1, x_2]$ with $d = \operatorname{deg}(f)$ distinct real roots has

A binary form $f \in \mathbb{R}[x_1, x_2]$ with $d = \deg(f)$ distinct real roots has $2d = 2 \operatorname{ev}(d, 2)$ critical points on \mathbb{S}^1 .

Abo, Seigal and Sturmfels, 2015: the product $f \in \mathbb{R}[x_1, x_2, x_3]$ of d general linear forms has $2(d^2 - d + 1) = 2 \operatorname{ev}(d, 3)$ crit. pts. on \mathbb{S}^2 .

Conjecture (Abo, Seigal and Sturmfels, 2015)

Let $\ell_1, \ldots, \ell_d \in \mathbb{R}^n$ be non-zero vectors.

For a generic $T \in \mathbb{R}^{(n,...,n)}$ the number of eigenpoints in $\mathbb{P}^{n-1}_{\mathbb{R}}$ is upper-bounded by $ev(d, n) = \frac{(d-1)^n - 1}{d-2}$. In particular: the restriction of a generic form $f \in \mathbb{R}[x_1, ..., x_n]$ of degree d to the sphere \mathbb{S}^{n-1} has at most $2\frac{(d-1)^n - 1}{d-2}$ critical points. A generic matrix $T \in \mathbb{R}^n \otimes \mathbb{R}^n$ has n eigenvalues (ev(2, n) = n). If T is symmetric, all eigenvalues, eigenvectors, eigenpoints are real. A binary form $f \in \mathbb{R}[x_1, x_2]$ with d = deg(f) distinct real roots has

A binary form $f \in \mathbb{R}[x_1, x_2]$ with $d = \deg(f)$ distinct real roots has $2d = 2 \operatorname{ev}(d, 2)$ critical points on \mathbb{S}^1 .

Abo, Seigal and Sturmfels, 2015: the product $f \in \mathbb{R}[x_1, x_2, x_3]$ of d general linear forms has $2(d^2 - d + 1) = 2 \operatorname{ev}(d, 3)$ crit. pts. on \mathbb{S}^2 .

Conjecture (Abo, Seigal and Sturmfels, 2015)

Let $\ell_1, \ldots, \ell_d \in \mathbb{R}^n$ be non-zero vectors. Then in any (Euclidean) neighborhood of $f(x) = (\ell_1^T x) \cdots (\ell_d^T x)$

For a generic $T \in \mathbb{R}^{(n,...,n)}$ the number of eigenpoints in $\mathbb{P}^{n-1}_{\mathbb{R}}$ is upper-bounded by $\operatorname{ev}(d, n) = \frac{(d-1)^n - 1}{d-2}$. In particular: the restriction of a generic form $f \in \mathbb{R}[x_1, \ldots, x_n]$ of degree d to the sphere \mathbb{S}^{n-1} has at most $2\frac{(d-1)^n - 1}{d-2}$ critical points. A generic matrix $T \in \mathbb{R}^n \otimes \mathbb{R}^n$ has n eigenvalues ($\operatorname{ev}(2, n) = n$). If T is symmetric, all eigenvalues, eigenvectors, eigenpoints are real.

A binary form $f \in \mathbb{R}[x_1, x_2]$ with $d = \deg(f)$ distinct real roots has $2d = 2 \operatorname{ev}(d, 2)$ critical points on \mathbb{S}^1 .

Abo, Seigal and Sturmfels, 2015: the product $f \in \mathbb{R}[x_1, x_2, x_3]$ of d general linear forms has $2(d^2 - d + 1) = 2 \operatorname{ev}(d, 3)$ crit. pts. on \mathbb{S}^2 .

Conjecture (Abo, Seigal and Sturmfels, 2015)

Let $\ell_1, \ldots, \ell_d \in \mathbb{R}^n$ be non-zero vectors. Then in any (Euclidean) neighborhood of $f(\mathbf{x}) = (\ell_1^\mathsf{T} \mathbf{x}) \cdots (\ell_d^\mathsf{T} \mathbf{x})$ there is a generic degree d form with $2\frac{(d-1)^n-1}{d-2} = 2\operatorname{ev}(d, n)$ critical points on \mathbb{S}^{n-1} .

Conjecture (Abo, Seigal and Sturmfels, 2015)

In any (Euclidean) neighborhood of $f(x) = (\ell_1^T x) \cdots (\ell_d^T x)$ there exists a generic form with $2 \operatorname{ev}(d, n)$ critical points on \mathbb{S}^{n-1} .

Conjecture (Abo, Seigal and Sturmfels, 2015)

In any (Euclidean) neighborhood of $f(\mathbf{x}) = (\ell_1^T \mathbf{x}) \cdots (\ell_d^T \mathbf{x})$ there exists a generic form with $2 \operatorname{ev}(d, n)$ critical points on \mathbb{S}^{n-1} .

Theorem (K., 2018)

Conjecture (Abo, Seigal and Sturmfels, 2015)

In any (Euclidean) neighborhood of $f(x) = (\ell_1^T x) \cdots (\ell_d^T x)$ there exists a generic form with $2 \operatorname{ev}(d, n)$ critical points on \mathbb{S}^{n-1} .

Theorem (K., 2018) For any $d \ge 1$ and $n \ge 2$

Conjecture (Abo, Seigal and Sturmfels, 2015)

In any (Euclidean) neighborhood of $f(x) = (\ell_1^T x) \cdots (\ell_d^T x)$ there exists a generic form with $2 \operatorname{ev}(d, n)$ critical points on \mathbb{S}^{n-1} .

Theorem (K., 2018)

For any $d \ge 1$ and $n \ge 2$ there exists a generic symmetric tensors $T \in Sym^d(\mathbb{R}^n)$

Conjecture (Abo, Seigal and Sturmfels, 2015)

In any (Euclidean) neighborhood of $f(x) = (\ell_1^T x) \cdots (\ell_d^T x)$ there exists a generic form with $2 \operatorname{ev}(d, n)$ critical points on \mathbb{S}^{n-1} .

Theorem (K., 2018)

For any $d \ge 1$ and $n \ge 2$ there exists a generic symmetric tensors $T \in Sym^d(\mathbb{R}^n)$ all of whose ev(d, n) eigenpoints are real.

Conjecture (Abo, Seigal and Sturmfels, 2015)

In any (Euclidean) neighborhood of $f(\mathbf{x}) = (\ell_1^T \mathbf{x}) \cdots (\ell_d^T \mathbf{x})$ there exists a generic form with $2 \operatorname{ev}(d, n)$ critical points on \mathbb{S}^{n-1} .

Theorem (K., 2018)

For any $d \ge 1$ and $n \ge 2$ there exists a generic symmetric tensors $T \in Sym^d(\mathbb{R}^n)$ all of whose ev(d, n) eigenpoints are real. Moreover, such a tensor can be chosen to be traceless,

Conjecture (Abo, Seigal and Sturmfels, 2015)

In any (Euclidean) neighborhood of $f(\mathbf{x}) = (\ell_1^T \mathbf{x}) \cdots (\ell_d^T \mathbf{x})$ there exists a generic form with $2 \operatorname{ev}(d, n)$ critical points on \mathbb{S}^{n-1} .

Theorem (K., 2018)

For any $d \ge 1$ and $n \ge 2$ there exists a generic symmetric tensors $T \in Sym^d(\mathbb{R}^n)$ all of whose ev(d, n) eigenpoints are real. Moreover, such a tensor can be chosen to be traceless, that is,

$$\sum_{i=1}^{n} t_{iii_3...i_d} = 0, \quad i_3, \ldots, i_d = 1, \ldots, n.$$

Conjecture (Abo, Seigal and Sturmfels, 2015)

In any (Euclidean) neighborhood of $f(x) = (\ell_1^T x) \cdots (\ell_d^T x)$ there exists a generic form with $2 \operatorname{ev}(d, n)$ critical points on \mathbb{S}^{n-1} .

Theorem (K., 2018)

For any $d \ge 1$ and $n \ge 2$ there exists a generic symmetric tensors $T \in Sym^d(\mathbb{R}^n)$ all of whose ev(d, n) eigenpoints are real. Moreover, such a tensor can be chosen to be traceless, that is,

$$\sum_{i=1}^{n} t_{iii_3...i_d} = 0, \quad i_3, \ldots, i_d = 1, \ldots, n.$$

Equivalently, there exists a generic form $f \in \mathbb{R}[x_1, \dots, x_n]$ of degree d

Conjecture (Abo, Seigal and Sturmfels, 2015)

In any (Euclidean) neighborhood of $f(x) = (\ell_1^T x) \cdots (\ell_d^T x)$ there exists a generic form with $2 \operatorname{ev}(d, n)$ critical points on \mathbb{S}^{n-1} .

Theorem (K., 2018)

For any $d \ge 1$ and $n \ge 2$ there exists a generic symmetric tensors $T \in Sym^d(\mathbb{R}^n)$ all of whose ev(d, n) eigenpoints are real. Moreover, such a tensor can be chosen to be traceless, that is,

$$\sum_{i=1}^{n} t_{iii_3...i_d} = 0, \quad i_3, \ldots, i_d = 1, \ldots, n.$$

Equivalently, there exists a generic form $f \in \mathbb{R}[x_1, ..., x_n]$ of degree d whose restriction to \mathbb{S}^{n-1} has $2 \operatorname{ev}(d, n)$ critical points.

Conjecture (Abo, Seigal and Sturmfels, 2015)

In any (Euclidean) neighborhood of $f(x) = (\ell_1^T x) \cdots (\ell_d^T x)$ there exists a generic form with $2 \operatorname{ev}(d, n)$ critical points on \mathbb{S}^{n-1} .

Theorem (K., 2018)

For any $d \ge 1$ and $n \ge 2$ there exists a generic symmetric tensors $T \in Sym^d(\mathbb{R}^n)$ all of whose ev(d, n) eigenpoints are real. Moreover, such a tensor can be chosen to be traceless, that is,

$$\sum_{i=1}^{n} t_{iii_3...i_d} = 0, \quad i_3, \ldots, i_d = 1, \ldots, n.$$

Equivalently, there exists a generic form $f \in \mathbb{R}[x_1, ..., x_n]$ of degree d whose restriction to \mathbb{S}^{n-1} has $2 \operatorname{ev}(d, n)$ critical points. Moreover, such a form can be chosen to be harmonic,

Conjecture (Abo, Seigal and Sturmfels, 2015)

In any (Euclidean) neighborhood of $f(x) = (\ell_1^T x) \cdots (\ell_d^T x)$ there exists a generic form with $2 \operatorname{ev}(d, n)$ critical points on \mathbb{S}^{n-1} .

Theorem (K., 2018)

For any $d \ge 1$ and $n \ge 2$ there exists a generic symmetric tensors $T \in Sym^d(\mathbb{R}^n)$ all of whose ev(d, n) eigenpoints are real. Moreover, such a tensor can be chosen to be traceless, that is,

$$\sum_{i=1}^{n} t_{iii_3...i_d} = 0, \quad i_3, \ldots, i_d = 1, \ldots, n.$$

Equivalently, there exists a generic form $f \in \mathbb{R}[x_1, \ldots, x_n]$ of degree d whose restriction to \mathbb{S}^{n-1} has $2 \operatorname{ev}(d, n)$ critical points. Moreover, such a form can be chosen to be harmonic, that is,

$$(\Delta f)(\mathsf{x}) \;=\; rac{\partial^2 f}{\partial x_1^2} + \cdots + rac{\partial^2 f}{\partial x_n^2} \;=\; 0, \quad \mathsf{x} \in \mathbb{R}^n.$$

Sketch of the proof (induction on *n*) n=2: the form $f(x_1, x_2) = \text{Re}(x_1 + ix_2)^d$

<u>n=2</u>: the form $f(x_1, x_2) = \operatorname{Re}(x_1 + ix_2)^d$ (in polar coordinates $f(\cos \theta, \sin \theta) = \cos(d\theta)$)

<u>n=2</u>: the form $f(x_1, x_2) = \operatorname{Re}(x_1 + ix_2)^d$ (in polar coordinates $f(\cos \theta, \sin \theta) = \cos(d\theta)$) is the unique (up to rotations and scalar multiplications) harmonic.

<u>n=2</u>: the form $f(x_1, x_2) = \operatorname{Re}(x_1 + ix_2)^d$ (in polar coordinates $f(\cos \theta, \sin \theta) = \cos(d\theta)$) is the unique (up to rotations and scalar multiplications) harmonic. Trivially, $f|_{\mathbb{S}^1}$ has 2*d* critical points.

<u>n=2</u>: the form $f(x_1, x_2) = \operatorname{Re}(x_1 + ix_2)^d$ (in polar coordinates $f(\cos \theta, \sin \theta) = \cos(d\theta)$) is the unique (up to rotations and scalar multiplications) harmonic. Trivially, $f|_{S^1}$ has 2d critical points.

Suppose $f_{d,n}$ is such that $f_{d,n}|_{\mathbb{S}^{n-1}}$ has $2 \operatorname{ev}(d, n)$ critical points.

<u>n=2</u>: the form $f(x_1, x_2) = \operatorname{Re}(x_1 + ix_2)^d$ (in polar coordinates $f(\cos \theta, \sin \theta) = \cos(d\theta)$) is the unique (up to rotations and scalar multiplications) harmonic. Trivially, $f|_{S^1}$ has 2d critical points.

Suppose $f_{d,n}$ is such that $f_{d,n}|_{\mathbb{S}^{n-1}}$ has $2 \operatorname{ev}(d, n)$ critical points. For any point $\mathbf{v} \in \mathbb{S}^{n-1}$

<u>n=2</u>: the form $f(x_1, x_2) = \operatorname{Re}(x_1 + ix_2)^d$ (in polar coordinates $f(\cos \theta, \sin \theta) = \cos(d\theta)$) is the unique (up to rotations and scalar multiplications) harmonic. Trivially, $f|_{\mathbb{S}^1}$ has 2d critical points.

Suppose $f_{d,n}$ is such that $f_{d,n}|_{\mathbb{S}^{n-1}}$ has $2 \operatorname{ev}(d, n)$ critical points.

For any point $y \in \mathbb{S}^{n-1}$ there exists a harmonic form $Z_{d,n}$ that is invariant under orthogonal transformations preserving y.
<u>n=2</u>: the form $f(x_1, x_2) = \operatorname{Re}(x_1 + ix_2)^d$ (in polar coordinates $f(\cos \theta, \sin \theta) = \cos(d\theta)$) is the unique (up to rotations and scalar multiplications) harmonic. Trivially, $f|_{\mathbb{S}^1}$ has 2d critical points.

Suppose $f_{d,n}$ is such that $f_{d,n}|_{\mathbb{S}^{n-1}}$ has $2 \operatorname{ev}(d, n)$ critical points.

For any point $y \in \mathbb{S}^{n-1}$ there exists a harmonic form $Z_{d,n}$ that is invariant under orthogonal transformations preserving y. Actually, $Z_{d,n}(x) = G_{d,n}(y^T x)$,

<u>n=2</u>: the form $f(x_1, x_2) = \operatorname{Re}(x_1 + ix_2)^d$ (in polar coordinates $f(\cos \theta, \sin \theta) = \cos(d\theta)$) is the unique (up to rotations and scalar multiplications) harmonic. Trivially, $f|_{\mathbb{S}^1}$ has 2d critical points.

Suppose $f_{d,n}$ is such that $f_{d,n}|_{\mathbb{S}^{n-1}}$ has $2 \operatorname{ev}(d, n)$ critical points.

For any point $y \in \mathbb{S}^{n-1}$ there exists a harmonic form $Z_{d,n}$ that is invariant under orthogonal transformations preserving y. Actually, $Z_{d,n}(x) = G_{d,n}(y^T x)$, where $\{G_{d,n}\}_{d\geq 0}$ is the family of orthogonal polynomials on [-1, 1] (called Gegenbauer polynomials).

<u>n=2</u>: the form $f(x_1, x_2) = \operatorname{Re}(x_1 + ix_2)^d$ (in polar coordinates $f(\cos \theta, \sin \theta) = \cos(d\theta)$) is the unique (up to rotations and scalar multiplications) harmonic. Trivially, $f|_{\mathbb{S}^1}$ has 2d critical points.

Suppose $f_{d,n}$ is such that $f_{d,n}|_{\mathbb{S}^{n-1}}$ has $2 \operatorname{ev}(d, n)$ critical points.

For any point $y \in \mathbb{S}^{n-1}$ there exists a harmonic form $Z_{d,n}$ that is invariant under orthogonal transformations preserving y. Actually, $Z_{d,n}(x) = G_{d,n}(y^T x)$, where $\{G_{d,n}\}_{d\geq 0}$ is the family of orthogonal polynomials on [-1, 1] (called Gegenbauer polynomials).

Then for $\varepsilon \sim 0$

<u>n=2</u>: the form $f(x_1, x_2) = \operatorname{Re}(x_1 + ix_2)^d$ (in polar coordinates $f(\cos \theta, \sin \theta) = \cos(d\theta)$) is the unique (up to rotations and scalar multiplications) harmonic. Trivially, $f|_{\mathbb{S}^1}$ has 2d critical points.

Suppose $f_{d,n}$ is such that $f_{d,n}|_{\mathbb{S}^{n-1}}$ has $2 \operatorname{ev}(d, n)$ critical points.

For any point $y \in \mathbb{S}^{n-1}$ there exists a harmonic form $Z_{d,n}$ that is invariant under orthogonal transformations preserving y. Actually, $Z_{d,n}(x) = G_{d,n}(y^T x)$, where $\{G_{d,n}\}_{d\geq 0}$ is the family of orthogonal polynomials on [-1, 1] (called Gegenbauer polynomials).

Then for $\varepsilon \sim 0$ the (n+1)-variate form $f_{d,n+1} = Z_{d,n+1} + \varepsilon f_{d,n}$

<u>n=2</u>: the form $f(x_1, x_2) = \operatorname{Re}(x_1 + ix_2)^d$ (in polar coordinates $f(\cos \theta, \sin \theta) = \cos(d\theta)$) is the unique (up to rotations and scalar multiplications) harmonic. Trivially, $f|_{\mathbb{S}^1}$ has 2d critical points.

Suppose $f_{d,n}$ is such that $f_{d,n}|_{\mathbb{S}^{n-1}}$ has $2 \operatorname{ev}(d, n)$ critical points.

For any point $y \in \mathbb{S}^{n-1}$ there exists a harmonic form $Z_{d,n}$ that is invariant under orthogonal transformations preserving y. Actually, $Z_{d,n}(x) = G_{d,n}(y^T x)$, where $\{G_{d,n}\}_{d\geq 0}$ is the family of orthogonal polynomials on [-1, 1] (called Gegenbauer polynomials).

Then for $\varepsilon \sim 0$ the (n+1)-variate form $f_{d,n+1} = Z_{d,n+1} + \varepsilon f_{d,n}$ has

$$2 + 2 \operatorname{ev}(d, n) (d - 1) = 2 \left(1 + \frac{(d - 1)^n - 1}{d - 2} (d - 1) \right)$$
$$= 2 \frac{(d - 1)^{n+1} - 1}{d - 2} = 2 \operatorname{ev}(d, n + 1)$$

critical points on the *n*-dimensional sphere \mathbb{S}^n .

Illustrative example (spherical plot)

 $Z_{3,3}$, a harmonic form $f_{3,2}$ with $2 \operatorname{ev}(3,2) = 6$ critical points on \mathbb{S}^1 and the perturbation $f_{3,3} = Z_{3,3} + \varepsilon f_{3,2}$ with $2 \operatorname{ev}_{3,3} = 14$ critical points on \mathbb{S}^2 .

Critical points of fixed index A smooth function $f: \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse,

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point x is non-degenerate,

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point x is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x,

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point × is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x, the Hessian $H_x(f) = \left(\frac{\partial^2 f}{\partial \theta_i \partial \theta_j}(x)\right)_{i,j=1}^{n-1}$ has rank n-1.

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point x is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x, the Hessian $H_x(f) = \left(\frac{\partial^2 f}{\partial \theta_i \partial \theta_j}(x)\right)_{i,j=1}^{n-1}$ has rank n-1.

The number of negative eigenvalues of $H_{\times}(f)$

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point x is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x, the Hessian $H_x(f) = \left(\frac{\partial^2 f}{\partial \theta_i \partial \theta_j}(x)\right)_{i,j=1}^{n-1}$ has rank n-1.

The number of negative eigenvalues of $H_x(f)$ is known as the index of a non-degenerate critical point $x \in S^{n-1}$ of f.

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point x is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x, the Hessian $H_x(f) = \left(\frac{\partial^2 f}{\partial \theta_i \partial \theta_j}(x)\right)_{i,j=1}^{n-1}$ has rank n-1.

The number of negative eigenvalues of $H_x(f)$ is known as the index of a non-degenerate critical point $x \in S^{n-1}$ of f.

For k = 0, 1..., n - 1

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point x is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x, the Hessian $H_x(f) = \left(\frac{\partial^2 f}{\partial \theta_i \partial \theta_j}(x)\right)_{i,j=1}^{n-1}$ has rank n-1.

The number of negative eigenvalues of $H_x(f)$ is known as the index of a non-degenerate critical point $x \in S^{n-1}$ of f.

For k = 0, 1..., n-1 let $l_k(f)$ be the number of critical points of a Morse function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ that have index k.

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point x is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x, the Hessian $H_x(f) = \left(\frac{\partial^2 f}{\partial \theta_i \partial \theta_j}(x)\right)_{i,j=1}^{n-1}$ has rank n-1.

The number of negative eigenvalues of $H_x(f)$ is known as the index of a non-degenerate critical point $x \in S^{n-1}$ of f.

For k = 0, 1, ..., n - 1 let $I_k(f)$ be the number of critical points of a Morse function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ that have index k.

For example,

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point x is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x, the Hessian $H_x(f) = \left(\frac{\partial^2 f}{\partial \theta_i \partial \theta_j}(x)\right)_{i,j=1}^{n-1}$ has rank n-1.

The number of negative eigenvalues of $H_x(f)$ is known as the index of a non-degenerate critical point $x \in \mathbb{S}^{n-1}$ of f.

For k = 0, 1, ..., n - 1 let $I_k(f)$ be the number of critical points of a Morse function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ that have index k.

For example, $I_0(f)$ is the number of local minima of f

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point x is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x, the Hessian $H_x(f) = \left(\frac{\partial^2 f}{\partial \theta_i \partial \theta_j}(x)\right)_{i,j=1}^{n-1}$ has rank n-1.

The number of negative eigenvalues of $H_x(f)$ is known as the index of a non-degenerate critical point $x \in S^{n-1}$ of f.

For k = 0, 1..., n-1 let $I_k(f)$ be the number of critical points of a Morse function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ that have index k.

For example, $I_0(f)$ is the number of local minima of f and $I_{n-1}(f)$ is the number of local maxima.

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point x is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x, the Hessian $H_x(f) = \left(\frac{\partial^2 f}{\partial \theta_i \partial \theta_j}(x)\right)_{i,j=1}^{n-1}$ has rank n-1.

The number of negative eigenvalues of $H_x(f)$ is known as the index of a non-degenerate critical point $x \in S^{n-1}$ of f.

For k = 0, 1..., n-1 let $I_k(f)$ be the number of critical points of a Morse function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ that have index k.

For example, $I_0(f)$ is the number of local minima of f and $I_{n-1}(f)$ is the number of local maxima. The total number of critical points

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point x is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x, the Hessian $H_x(f) = \left(\frac{\partial^2 f}{\partial \theta_i \partial \theta_j}(x)\right)_{i,j=1}^{n-1}$ has rank n-1.

The number of negative eigenvalues of $H_x(f)$ is known as the index of a non-degenerate critical point $x \in S^{n-1}$ of f.

For k = 0, 1..., n-1 let $I_k(f)$ be the number of critical points of a Morse function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ that have index k.

For example, $I_0(f)$ is the number of local minima of f and $I_{n-1}(f)$ is the number of local maxima. The total number of critical points is $\sum_{k=0}^{n-1} I_k(f)$

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point x is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x, the Hessian $H_x(f) = \left(\frac{\partial^2 f}{\partial \theta_i \partial \theta_j}(x)\right)_{i,j=1}^{n-1}$ has rank n-1.

The number of negative eigenvalues of $H_x(f)$ is known as the index of a non-degenerate critical point $x \in S^{n-1}$ of f.

For k = 0, 1..., n-1 let $I_k(f)$ be the number of critical points of a Morse function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ that have index k.

For example, $I_0(f)$ is the number of local minima of f and $I_{n-1}(f)$ is the number of local maxima. The total number of critical points is $\sum_{k=0}^{n-1} I_k(f)$ and $\sum_{k=0}^{n-1} (-1)^k I_k(f) = 1 + (-1)^{n-1}$ holds.

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point x is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x, the Hessian $H_x(f) = \left(\frac{\partial^2 f}{\partial \theta_i \partial \theta_j}(x)\right)_{i,j=1}^{n-1}$ has rank n-1.

The number of negative eigenvalues of $H_x(f)$ is known as the index of a non-degenerate critical point $x \in S^{n-1}$ of f.

For k = 0, 1..., n-1 let $I_k(f)$ be the number of critical points of a Morse function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ that have index k.

For example, $I_0(f)$ is the number of local minima of f and $I_{n-1}(f)$ is the number of local maxima. The total number of critical points is $\sum_{k=0}^{n-1} I_k(f)$ and $\sum_{k=0}^{n-1} (-1)^k I_k(f) = 1 + (-1)^{n-1}$ holds. Fact:

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point × is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x, the Hessian $H_x(f) = \left(\frac{\partial^2 f}{\partial \theta_i \partial \theta_j}(x)\right)_{i,j=1}^{n-1}$ has rank n-1.

The number of negative eigenvalues of $H_x(f)$ is known as the index of a non-degenerate critical point $x \in S^{n-1}$ of f.

For k = 0, 1..., n-1 let $I_k(f)$ be the number of critical points of a Morse function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ that have index k.

For example, $I_0(f)$ is the number of local minima of f and $I_{n-1}(f)$ is the number of local maxima. The total number of critical points is $\sum_{k=0}^{n-1} I_k(f)$ and $\sum_{k=0}^{n-1} (-1)^k I_k(f) = 1 + (-1)^{n-1}$ holds. Fact: for a generic form f,

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point × is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x, the Hessian $H_x(f) = \left(\frac{\partial^2 f}{\partial \theta_i \partial \theta_j}(x)\right)_{i,j=1}^{n-1}$ has rank n-1.

The number of negative eigenvalues of $H_x(f)$ is known as the index of a non-degenerate critical point $x \in S^{n-1}$ of f.

For k = 0, 1..., n-1 let $I_k(f)$ be the number of critical points of a Morse function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ that have index k.

For example, $I_0(f)$ is the number of local minima of f and $I_{n-1}(f)$ is the number of local maxima. The total number of critical points is $\sum_{k=0}^{n-1} I_k(f)$ and $\sum_{k=0}^{n-1} (-1)^k I_k(f) = 1 + (-1)^{n-1}$ holds.

Fact: for a generic form f, the function $f|_{\mathbb{S}^{n-1}}$ is Morse.

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point × is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x, the Hessian $H_x(f) = \left(\frac{\partial^2 f}{\partial \theta_i \partial \theta_j}(x)\right)_{i,j=1}^{n-1}$ has rank n-1.

The number of negative eigenvalues of $H_x(f)$ is known as the index of a non-degenerate critical point $x \in S^{n-1}$ of f.

For k = 0, 1, ..., n-1 let $I_k(f)$ be the number of critical points of a Morse function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ that have index k.

For example, $I_0(f)$ is the number of local minima of f and $I_{n-1}(f)$ is the number of local maxima. The total number of critical points is $\sum_{k=0}^{n-1} I_k(f)$ and $\sum_{k=0}^{n-1} (-1)^k I_k(f) = 1 + (-1)^{n-1}$ holds.

Fact: for a generic form f, the function $f|_{\mathbb{S}^{n-1}}$ is Morse.

Problem

A smooth function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ is Morse, if every its critical point × is non-degenerate, that is, in (any) local coordinates $\theta_1, \ldots, \theta_{n-1}$ around x, the Hessian $H_x(f) = \left(\frac{\partial^2 f}{\partial \theta_i \partial \theta_j}(x)\right)_{i,j=1}^{n-1}$ has rank n-1.

The number of negative eigenvalues of $H_x(f)$ is known as the index of a non-degenerate critical point $x \in S^{n-1}$ of f.

For k = 0, 1, ..., n-1 let $I_k(f)$ be the number of critical points of a Morse function $f : \mathbb{S}^{n-1} \to \mathbb{R}$ that have index k.

For example, $I_0(f)$ is the number of local minima of f and $I_{n-1}(f)$ is the number of local maxima. The total number of critical points is $\sum_{k=0}^{n-1} I_k(f)$ and $\sum_{k=0}^{n-1} (-1)^k I_k(f) = 1 + (-1)^{n-1}$ holds.

Fact: for a generic form f, the function $f|_{\mathbb{S}^{n-1}}$ is Morse.

Problem

How large can numbers $I_0(f)$, $I_1(f)$, ..., $I_{n-1}(f)$ be for a generic form $f \in \mathbb{R}[x_1, \ldots, x_n]$ of degree d?

Part 3. Quality of rank-one approximations

Problem:

Problem: compute/estimate the largest possible (relative) best rank-one approximation error

Problem: compute/estimate the largest possible (relative) best rank-one approximation error over all tensors of format $n \times \cdots \times n$,

Problem: compute/estimate the largest possible (relative) best rank-one approximation error over all tensors of format $n \times \cdots \times n$,

$$\frac{\|\mathsf{T} - \mathsf{T}_*\|}{\|\mathsf{T}\|} = \sqrt{1 - \frac{\|\mathsf{T}\|_{\infty}^2}{\|\mathsf{T}\|^2}} \longrightarrow \max$$

Problem: compute/estimate the largest possible (relative) best rank-one approximation error over all tensors of format $n \times \cdots \times n$,

$$\frac{\|\mathsf{T} - \mathsf{T}_*\|}{\|\mathsf{T}\|} = \sqrt{1 - \frac{\|\mathsf{T}\|_{\infty}^2}{\|\mathsf{T}\|^2}} \longrightarrow \max$$

Equivalently: compute the best rank-one approximation ratio

Problem: compute/estimate the largest possible (relative) best rank-one approximation error over all tensors of format $n \times \cdots \times n$,

$$\frac{\|\mathsf{T} - \mathsf{T}_*\|}{\|\mathsf{T}\|} = \sqrt{1 - \frac{\|\mathsf{T}\|_{\infty}^2}{\|\mathsf{T}\|^2}} \longrightarrow \max$$

Equivalently: compute the best rank-one approximation ratio

$$\mathcal{A}_{d,n} := \min_{\mathsf{T} \in \mathbb{R}^n} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|}, \quad \|\mathsf{T}\|_{\infty} = \max_{\mathsf{x}^{j} \in \mathbb{S}^{n-1}} |\mathcal{F}_{\mathsf{T}}(\mathsf{x}^1, \dots, \mathsf{x}^d)|.$$

Problem: compute/estimate the largest possible (relative) best rank-one approximation error over all tensors of format $n \times \cdots \times n$,

$$\frac{\|\mathsf{T} - \mathsf{T}_*\|}{\|\mathsf{T}\|} = \sqrt{1 - \frac{\|\mathsf{T}\|_{\infty}^2}{\|\mathsf{T}\|^2}} \longrightarrow \max$$

Equivalently: compute the best rank-one approximation ratio

$$\mathcal{A}_{d,n} := \min_{\mathsf{T} \in \mathbb{R}^n} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|}, \quad \|\mathsf{T}\|_{\infty} = \max_{\mathsf{x}^j \in \mathbb{S}^{n-1}} |\mathcal{F}_\mathsf{T}(\mathsf{x}^1, \dots, \mathsf{x}^d)|.$$

 $\mathcal{A}_{d,n}$ governs the convergence rate of greedy rank-one update algorithm.

Problem: compute/estimate the largest possible (relative) best rank-one approximation error over all tensors of format $n \times \cdots \times n$,

$$\frac{\|\mathsf{T} - \mathsf{T}_*\|}{\|\mathsf{T}\|} = \sqrt{1 - \frac{\|\mathsf{T}\|_{\infty}^2}{\|\mathsf{T}\|^2}} \longrightarrow \max$$

Equivalently: compute the best rank-one approximation ratio

$$\mathcal{A}_{d,n} := \min_{\mathsf{T} \in \mathbb{R}^n} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|}, \quad \|\mathsf{T}\|_{\infty} = \max_{\mathsf{x}^j \in \mathbb{S}^{n-1}} |\mathcal{F}_\mathsf{T}(\mathsf{x}^1, \dots, \mathsf{x}^d)|.$$

 $\mathcal{A}_{d,n}$ governs the convergence rate of greedy rank-one update algorithm. Was introduced in this context by Qi in 2011.

$$T^{(k)} = T, \quad T^{(k+1)} = T^{(k)} - T^{(k)}_{4}$$
$$\|T^{(k+1)}\|^{2} \leq \|T^{(k)}\|^{2} (1 - A_{d,k}^{2}) \leq \dots \leq \|T\|^{2} (1 - A_{d,k}^{2})$$
Banach:

Banach: a symmetric $T \in \text{Sym}^d(\mathbb{R}^n)$ has a symmetric best rank-1 approximation $T_* = \lambda \times \otimes \cdots \otimes x$, $\lambda \in \mathbb{R}$, $x \in \mathbb{S}^{n-1}$.

Banach: a symmetric $T \in \text{Sym}^d(\mathbb{R}^n)$ has a symmetric best rank-1 approximation $T_* = \lambda \times \otimes \cdots \otimes \times, \ \lambda \in \mathbb{R}, \ x \in \mathbb{S}^{n-1}$. In particular,

$$\|\mathsf{T}\|_{\infty} = \max_{\mathsf{x} \in \mathbb{S}^{n-1}} |f_{\mathsf{T}}(\mathsf{x})|$$

Banach: a symmetric $T \in \text{Sym}^d(\mathbb{R}^n)$ has a symmetric best rank-1 approximation $T_* = \lambda \times \otimes \cdots \otimes \times, \ \lambda \in \mathbb{R}, \ x \in \mathbb{S}^{n-1}$. In particular,

$$\|\mathsf{T}\|_{\infty} = \max_{\mathsf{x} \in \mathbb{S}^{n-1}} |f_{\mathsf{T}}(\mathsf{x})|$$

Symmetric best rank-1 approximation ratio:

Banach: a symmetric $T \in \text{Sym}^d(\mathbb{R}^n)$ has a symmetric best rank-1 approximation $T_* = \lambda \times \otimes \cdots \otimes \times, \ \lambda \in \mathbb{R}, \ x \in \mathbb{S}^{n-1}$. In particular,

$$\|\mathsf{T}\|_{\infty} = \max_{\mathsf{x} \in \mathbb{S}^{n-1}} |f_{\mathsf{T}}(\mathsf{x})|$$

Symmetric best rank-1 approximation ratio:

$$\mathcal{A}_{d,n}^{\mathsf{sym}} := \min_{\mathsf{T} \in \operatorname{Sym}^{d}(\mathbb{R}^{n})} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|}$$

Banach: a symmetric $T \in \text{Sym}^d(\mathbb{R}^n)$ has a symmetric best rank-1 approximation $T_* = \lambda \times \otimes \cdots \otimes \times, \ \lambda \in \mathbb{R}, \ x \in \mathbb{S}^{n-1}$. In particular,

$$\|\mathsf{T}\|_{\infty} = \max_{\mathsf{x} \in \mathbb{S}^{n-1}} |f_{\mathsf{T}}(\mathsf{x})|$$

Symmetric best rank-1 approximation ratio:

$$\mathcal{A}_{d,n}^{\mathsf{sym}} := \min_{\mathsf{T} \in \mathsf{Sym}^d(\mathbb{R}^n)} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|}$$

A symmetric T minimizes the ratio $\|T\|_{\infty}/\|T\|$

Banach: a symmetric $T \in \text{Sym}^d(\mathbb{R}^n)$ has a symmetric best rank-1 approximation $T_* = \lambda \times \otimes \cdots \otimes \times, \ \lambda \in \mathbb{R}, \ x \in \mathbb{S}^{n-1}$. In particular,

$$\|\mathsf{T}\|_{\infty} = \max_{\mathsf{x} \in \mathbb{S}^{n-1}} |f_{\mathsf{T}}(\mathsf{x})|$$

Symmetric best rank-1 approximation ratio:

$$\mathcal{A}_{d,n}^{\mathsf{sym}} := \min_{\mathsf{T} \in \operatorname{Sym}^d(\mathbb{R}^n)} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|}$$

A symmetric T minimizes the ratio $\|T\|_{\infty}/\|T\|$ iff it has the worst relative approximation ratio

$$\frac{\|\mathsf{T} - \mathsf{T}_*\|}{\|\mathsf{T}\|} \; = \; \sqrt{1 - \frac{\|\mathsf{T}\|_\infty^2}{\|\mathsf{T}\|^2}}$$

among all symmetric tensor in $\operatorname{Sym}^{d}(\mathbb{R}^{n})$.

Some known facts about $\mathcal{A}_{d,n}$ and $\mathcal{A}_{d,n}^{sym}$

Some known facts about $A_{d,n}$ and $A_{d,n}^{sym}$ Matrix case (d = 2): Some known facts about $A_{d,n}$ and $A_{d,n}^{\text{sym}}$ Matrix case (d = 2): $A_{2,n} = A_{2,n}^{\text{sym}} = \frac{1}{n}$

$$\frac{1}{\sqrt{n^{d-1}}} \leq \mathcal{A}_{d,n} = \min_{\mathsf{T} \in \mathbb{R}^n} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq \mathcal{A}_{d,n}^{\mathsf{sym}} = \min_{\mathsf{T} \in \mathsf{Sym}^d(\mathbb{R}^n)} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq 1$$

$$\frac{1}{\sqrt{n^{d-1}}} \leq \mathcal{A}_{d,n} = \min_{\mathsf{T} \in \mathbb{R}^n} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq \mathcal{A}_{d,n}^{\mathsf{sym}} = \min_{\mathsf{T} \in \mathsf{Sym}^d(\mathbb{R}^n)} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq 1$$

Li, Nakatsukasa, Soma, Uschmajew, 2018:

$$\frac{1}{\sqrt{n^{d-1}}} \leq \mathcal{A}_{d,n} = \min_{\mathsf{T} \in \mathbb{R}^n} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq \mathcal{A}_{d,n}^{\mathsf{sym}} = \min_{\mathsf{T} \in \mathsf{Sym}^d(\mathbb{R}^n)} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq 1$$

Li, Nakatsukasa, Soma, Uschmajew, 2018: when $d \ge 3$, the left lower bound is tight if and only if n = 1, 2, 4 or 8.

$$\frac{1}{\sqrt{n^{d-1}}} \leq \mathcal{A}_{d,n} = \min_{\mathsf{T} \in \mathbb{R}^n} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq \mathcal{A}_{d,n}^{\mathsf{sym}} = \min_{\mathsf{T} \in \mathsf{Sym}^d(\mathbb{R}^n)} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq 1$$

Li, Nakatsukasa, Soma, Uschmajew, 2018: when $d \ge 3$, the left lower bound is tight if and only if n = 1, 2, 4 or 8. In such cases for d = 3, multiplication tensors of the 4 composition algebras (\mathbb{R} , \mathbb{C} , \mathbb{H} , \mathbb{O}) are minimizers of the norm ratio.

$$\frac{1}{\sqrt{\textit{n}^{d-1}}} \leq \mathcal{A}_{d,\textit{n}} = \min_{\mathsf{T} \in \mathbb{R}^{n}} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq \mathcal{A}_{d,\textit{n}}^{\mathsf{sym}} = \min_{\mathsf{T} \in \mathsf{Sym}^{d}(\mathbb{R}^{n})} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq 1$$

Li, Nakatsukasa, Soma, Uschmajew, 2018: when $d \ge 3$, the left lower bound is tight if and only if n = 1, 2, 4 or 8. In such cases for d = 3, multiplication tensors of the 4 composition algebras (\mathbb{R} , \mathbb{C} , \mathbb{H} , \mathbb{O}) are minimizers of the norm ratio.

Agrachev, K., Uschmajew, 2019:

$$\frac{1}{\sqrt{\textit{n}^{d-1}}} \leq \mathcal{A}_{d,\textit{n}} = \min_{\mathsf{T} \in \mathbb{R}^{\textit{n}}} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq \mathcal{A}_{d,\textit{n}}^{\mathsf{sym}} = \min_{\mathsf{T} \in \mathsf{Sym}^{d}(\mathbb{R}^{\textit{n}})} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq 1$$

Li, Nakatsukasa, Soma, Uschmajew, 2018: when $d \ge 3$, the left lower bound is tight if and only if n = 1, 2, 4 or 8. In such cases for d = 3, multiplication tensors of the 4 composition algebras (\mathbb{R} , \mathbb{C} , \mathbb{H} , \mathbb{O}) are minimizers of the norm ratio.

Agrachev, K., Uschmajew, 2019: for n = 2, $\frac{1}{\sqrt{2^{d-1}}} = \frac{\|T\|_{\infty}}{\|T\|}$ for $T \in \text{Sym}^d(\mathbb{R}^2)$

$$\frac{1}{\sqrt{n^{d-1}}} \leq \mathcal{A}_{d,n} = \min_{\mathsf{T} \in \mathbb{R}^n} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq \mathcal{A}_{d,n}^{\mathsf{sym}} = \min_{\mathsf{T} \in \mathsf{Sym}^d(\mathbb{R}^n)} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq 1$$

Li, Nakatsukasa, Soma, Uschmajew, 2018: when $d \ge 3$, the left lower bound is tight if and only if n = 1, 2, 4 or 8. In such cases for d = 3, multiplication tensors of the 4 composition algebras (\mathbb{R} , \mathbb{C} , \mathbb{H} , \mathbb{O}) are minimizers of the norm ratio.

Agrachev, K., Uschmajew, 2019: for n = 2, $\frac{1}{\sqrt{2^{d-1}}} = \frac{\|T\|_{\infty}}{\|T\|}$ for $T \in \text{Sym}^d(\mathbb{R}^2)$ iff the binary form f_T ,

$$\frac{1}{\sqrt{n^{d-1}}} \leq \mathcal{A}_{d,n} = \min_{\mathsf{T} \in \mathbb{R}^n} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq \mathcal{A}_{d,n}^{\mathsf{sym}} = \min_{\mathsf{T} \in \mathsf{Sym}^d(\mathbb{R}^n)} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq 1$$

Li, Nakatsukasa, Soma, Uschmajew, 2018: when $d \ge 3$, the left lower bound is tight if and only if n = 1, 2, 4 or 8. In such cases for d = 3, multiplication tensors of the 4 composition algebras (\mathbb{R} , \mathbb{C} , \mathbb{H} , \mathbb{O}) are minimizers of the norm ratio.

Agrachev, K., Uschmajew, 2019: for n = 2, $\frac{1}{\sqrt{2^{d-1}}} = \frac{\|T\|_{\infty}}{\|T\|}$ for $T \in \text{Sym}^d(\mathbb{R}^2)$ iff the binary form f_T , up to scalar multiplications and orthogonal transformations,

$$\frac{1}{\sqrt{\textit{n}^{d-1}}} \leq \mathcal{A}_{d,\textit{n}} = \min_{\mathsf{T} \in \mathbb{R}^{\textit{n}}} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq \mathcal{A}_{d,\textit{n}}^{\mathsf{sym}} = \min_{\mathsf{T} \in \mathsf{Sym}^{d}(\mathbb{R}^{\textit{n}})} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq 1$$

Li, Nakatsukasa, Soma, Uschmajew, 2018: when $d \ge 3$, the left lower bound is tight if and only if n = 1, 2, 4 or 8. In such cases for d = 3, multiplication tensors of the 4 composition algebras (\mathbb{R} , \mathbb{C} , \mathbb{H} , \mathbb{O}) are minimizers of the norm ratio.

Agrachev, K., Uschmajew, 2019: for n = 2, $\frac{1}{\sqrt{2^{d-1}}} = \frac{\|T\|_{\infty}}{\|T\|}$ for $T \in \text{Sym}^d(\mathbb{R}^2)$ iff the binary form f_T , up to scalar multiplications and orthogonal transformations, coincides with $\text{Re}(x_1 + ix_2)^d$.

For
$$(3, 3, 3)$$
-tensors $A_{3,3} = A_{3,3}^{sym} = \frac{1}{\sqrt{7}}$

A decomposition of a tensor $\mathsf{T} \in \mathbb{R}^{\textit{n}}$

 $\mathsf{T} = \mathsf{T}_1 + \cdots + \mathsf{T}_r,$

into rank-one tensors $\mathsf{T}_1, \ldots, \mathsf{T}_r \in \mathcal{S}_n$

$Bounds \ from \ orthogonal \ rank$ A decomposition of a tensor $T \in \mathbb{R}^{\textit{n}}$

 $\mathsf{T} = \mathsf{T}_1 + \cdots + \mathsf{T}_r,$

into rank-one tensors $T_1, \ldots, T_r \in S_n$ is called orthogonal,

A decomposition of a tensor $\mathsf{T} \in \mathbb{R}^{\textit{n}}$

 $\mathsf{T} = \mathsf{T}_1 + \cdots + \mathsf{T}_r,$

into rank-one tensors $T_1, \ldots, T_r \in S_n$ is called orthogonal, if T_i 's are pairwise orthogonal, $\langle T_i, T_j \rangle = 0$, $i \neq j$.

A decomposition of a tensor $\mathsf{T} \in \mathbb{R}^{\textit{n}}$

 $\mathsf{T} = \mathsf{T}_1 + \cdots + \mathsf{T}_r,$

into rank-one tensors $T_1, \ldots, T_r \in S_n$ is called orthogonal, if T_i 's are pairwise orthogonal, $\langle T_i, T_j \rangle = 0$, $i \neq j$. The orthogonal rank $rk^{\perp}(T)$ of T is the smallest possible r in the above decomposition.

A decomposition of a tensor $\mathsf{T} \in \mathbb{R}^{\textit{n}}$

 $\mathsf{T} = \mathsf{T}_1 + \cdots + \mathsf{T}_r,$

into rank-one tensors $T_1, \ldots, T_r \in S_n$ is called orthogonal, if T_i 's are pairwise orthogonal, $\langle T_i, T_j \rangle = 0$, $i \neq j$. The orthogonal rank $rk^{\perp}(T)$ of T is the smallest possible r in the above decomposition. Theorem (Li, Nakatsukasa, Soma, Uschmajew, 2017)

A decomposition of a tensor $\mathsf{T} \in \mathbb{R}^n$

 $\mathsf{T} = \mathsf{T}_1 + \cdots + \mathsf{T}_r,$

into rank-one tensors $T_1, \ldots, T_r \in S_n$ is called orthogonal, if T_i 's are pairwise orthogonal, $\langle T_i, T_j \rangle = 0$, $i \neq j$. The orthogonal rank $rk^{\perp}(T)$ of T is the smallest possible r in the above decomposition. Theorem (Li, Nakatsukasa, Soma, Uschmajew, 2017) One has the following lower bound:

$$\mathcal{A}_{d,n} \geq \frac{1}{\sqrt{\max\{rk^{\perp}(\mathsf{T}) \, : \, \mathsf{T} \in \mathbb{R}^{n}\}}}$$

A decomposition of a tensor $\mathsf{T} \in \mathbb{R}^{\textit{n}}$

 $\mathsf{T} = \mathsf{T}_1 + \cdots + \mathsf{T}_r,$

into rank-one tensors $T_1, \ldots, T_r \in S_n$ is called orthogonal, if T_i 's are pairwise orthogonal, $\langle T_i, T_j \rangle = 0$, $i \neq j$. The orthogonal rank $rk^{\perp}(T)$ of T is the smallest possible r in the above decomposition. Theorem (Li, Nakatsukasa, Soma, Uschmajew, 2017) One has the following lower bound:

$$\mathcal{A}_{d,n} \geq \frac{1}{\sqrt{\max\{rk^{\perp}(\mathsf{T}) \, : \, \mathsf{T} \in \mathbb{R}^{n}\}}}$$

Conjecture (Uschmajew)

A decomposition of a tensor $\mathsf{T} \in \mathbb{R}^{\textit{n}}$

$$\mathsf{T} = \mathsf{T}_1 + \cdots + \mathsf{T}_r,$$

into rank-one tensors $T_1, \ldots, T_r \in S_n$ is called orthogonal, if T_i 's are pairwise orthogonal, $\langle T_i, T_j \rangle = 0$, $i \neq j$. The orthogonal rank $rk^{\perp}(T)$ of T is the smallest possible r in the above decomposition. Theorem (Li, Nakatsukasa, Soma, Uschmajew, 2017) One has the following lower bound:

$$\mathcal{A}_{d,n} \geq \frac{1}{\sqrt{\max\{rk^{\perp}(\mathsf{T}) \, : \, \mathsf{T} \in \mathbb{R}^{n}\}}}$$

Conjecture (Uschmajew)

The equality holds
$$\mathcal{A}_{d,n} = rac{1}{\sqrt{\max\{rk^{\perp}(\mathsf{T}):\mathsf{T}\in\mathbb{R}^n\}}}$$

Theorem (K. and Tonelli-Cueto, 2022+; Li et al., 2018)

Theorem (K. and Tonelli-Cueto, 2022+ ; Li et al., 2018) For any $d \ge 3$ and $n \ge 2$ we have

Theorem (K. and Tonelli-Cueto, 2022+ ; Li et al., 2018) For any $d \ge 3$ and $n \ge 2$ we have

$$\frac{1}{\sqrt{n^{d-1}}} \leq \mathcal{A}_{d,n} \leq \mathbb{E}_{\mathsf{T}\in\mathbb{R}^n} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq 10 \frac{\sqrt{d\ln d}}{\sqrt{n^{d-1}}}.$$

Theorem (K. and Tonelli-Cueto, 2022+ ; Li et al., 2018) For any $d \ge 3$ and $n \ge 2$ we have

$$\frac{1}{\sqrt{n^{d-1}}} \leq \mathcal{A}_{d,n} \leq \mathbb{E}_{\mathsf{T}\in\mathbb{R}^n} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq 10 \frac{\sqrt{d\ln d}}{\sqrt{n^{d-1}}}.$$

Corollary:
Qualitative bounds

Theorem (K. and Tonelli-Cueto, 2022+ ; Li et al., 2018) For any $d \ge 3$ and $n \ge 2$ we have

$$\frac{1}{\sqrt{n^{d-1}}} \leq \mathcal{A}_{d,n} \leq \mathbb{E}_{\mathsf{T} \in \mathbb{R}^n} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq 10 \frac{\sqrt{d \ln d}}{\sqrt{n^{d-1}}}.$$

Corollary: in particular,

Qualitative bounds

Theorem (K. and Tonelli-Cueto, 2022+ ; Li et al., 2018) For any $d \ge 3$ and $n \ge 2$ we have

$$\frac{1}{\sqrt{n^{d-1}}} \leq \mathcal{A}_{d,n} \leq \mathbb{E}_{\mathsf{T} \in \mathbb{R}^n} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq 10 \frac{\sqrt{d \ln d}}{\sqrt{n^{d-1}}}.$$

Corollary: in particular,

$$\mathcal{A}_{d,n} = \mathcal{O}\left(\frac{1}{\sqrt{n^{d-1}}}\right) \quad \text{as} \quad n \to \infty.$$

Qualitative bounds

Theorem (K. and Tonelli-Cueto, 2022+ ; Li et al., 2018) For any $d \ge 3$ and $n \ge 2$ we have

$$\frac{1}{\sqrt{n^{d-1}}} \leq \mathcal{A}_{d,n} \leq \mathbb{E}_{\mathsf{T} \in \mathbb{R}^n} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq 10 \frac{\sqrt{d \ln d}}{\sqrt{n^{d-1}}}.$$

Corollary: in particular,

$$\mathcal{A}_{d,n} = \mathcal{O}\left(\frac{1}{\sqrt{n^{d-1}}}\right) \quad \mathrm{as} \quad n \to \infty.$$

The best rank-1 approximation ratio is of the same order of magnitude as the trivial lower bound when $n \to \infty$.

Theorem (K., Tonelli-Cueto, 2022+)

Theorem (K., Tonelli-Cueto, 2022+) For all $d \ge 3$ and $n \ge 2$ we have

Theorem (K., Tonelli-Cueto, 2022+) For all $d \ge 3$ and $n \ge 2$ we have

$$\frac{1}{\sqrt{n^{d-1}}} \leq \mathcal{A}_{d,n}^{\mathsf{sym}} \leq \mathbb{E}_{\mathsf{T}\in\mathsf{Sym}_n^d} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq \frac{12\sqrt{n\ln d}}{\sqrt{\binom{n+d-1}{d}}} \leq 12\sqrt{\frac{d!\ln d}{n^{d-1}}}$$

Theorem (K., Tonelli-Cueto, 2022+) For all $d \ge 3$ and $n \ge 2$ we have

$$\frac{1}{\sqrt{n^{d-1}}} \leq \mathcal{A}_{d,n}^{\mathsf{sym}} \leq \mathbb{E}_{\mathsf{T}\in\mathsf{Sym}_n^d} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq \frac{12\sqrt{n\ln d}}{\sqrt{\binom{n+d-1}{d}}} \leq 12\sqrt{\frac{d!\ln d}{n^{d-1}}}$$

In particular, for a fixed $d\geq 3$ and $n\rightarrow\infty$

$$\mathcal{A}_{d,n}^{\text{sym}} = \mathcal{O}\left(\frac{1}{\sqrt{n^{d-1}}}\right) = \mathcal{A}_{d,n}.$$

Theorem (K., Tonelli-Cueto, 2022+) For all $d \ge 3$ and $n \ge 2$ we have

$$\frac{1}{\sqrt{n^{d-1}}} \leq \mathcal{A}_{d,n}^{\mathsf{sym}} \leq \mathbb{E}_{\mathsf{T}\in\mathsf{Sym}_n^d} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq \frac{12\sqrt{n\ln d}}{\sqrt{\binom{n+d-1}{d}}} \leq 12\sqrt{\frac{d!\ln d}{n^{d-1}}}$$

In particular, for a fixed d ≥ 3 and n $\rightarrow \infty$

$$\mathcal{A}_{d,n}^{\operatorname{sym}} = \mathcal{O}\left(\frac{1}{\sqrt{n^{d-1}}}\right) = \mathcal{A}_{d,n}.$$

IMPORTANT COROLLARY:

Theorem (K., Tonelli-Cueto, 2022+) For all $d \ge 3$ and $n \ge 2$ we have

$$\frac{1}{\sqrt{n^{d-1}}} \leq \mathcal{A}_{d,n}^{\mathsf{sym}} \leq \mathbb{E}_{\mathsf{T}\in\mathsf{Sym}_n^d} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq \frac{12\sqrt{n\ln d}}{\sqrt{\binom{n+d-1}{d}}} \leq 12\sqrt{\frac{d!\ln d}{n^{d-1}}}$$

In particular, for a fixed d \geq 3 and n $\rightarrow \infty$

$$\mathcal{A}_{d,n}^{\mathsf{sym}} = \mathcal{O}\left(\frac{1}{\sqrt{n^{d-1}}}\right) = \mathcal{A}_{d,n}.$$

IMPORTANT COROLLARY:

Symmetric tensors are as far from being rank-1

Theorem (K., Tonelli-Cueto, 2022+) For all $d \ge 3$ and $n \ge 2$ we have

$$\frac{1}{\sqrt{n^{d-1}}} \leq \mathcal{A}_{d,n}^{\mathsf{sym}} \leq \mathbb{E}_{\mathsf{T}\in\mathsf{Sym}_n^d} \frac{\|\mathsf{T}\|_{\infty}}{\|\mathsf{T}\|} \leq \frac{12\sqrt{n\ln d}}{\sqrt{\binom{n+d-1}{d}}} \leq 12\sqrt{\frac{d!\ln d}{n^{d-1}}}$$

In particular, for a fixed d \geq 3 and n $\rightarrow \infty$

$$\mathcal{A}_{d,n}^{\mathsf{sym}} = \mathcal{O}\left(\frac{1}{\sqrt{n^{d-1}}}\right) = \mathcal{A}_{d,n}.$$

IMPORTANT COROLLARY:

Symmetric tensors are as far from being rank-1 as general tensors.

Thank you!