Real aspects of the problem
of rank-one approximation

Khazhgali Kozhasov (TU Braunschweig)

AGATES Kickoff Workshop, Warsaw, 19-23 September 2022



Motivation



Motivation

/4/7» n:x‘ :ea-{'DOh.



i

roxy u—a-{'!Oh.

o ded

Motivation

METAPROBLEM: approximate a
“data”-tensor with a tensor from
some “lower-dimensional” mani-
fold /variety



i

roxy u—a-{'!Oh.
nmo ee

Motivation

METAPROBLEM: approximate a
“data”-tensor with a tensor from
some “lower-dimensional” mani-
fold /variety (approximation model).



/4/’/; fik :ea-{'DOh.

Matrices (2D data):

Motivation

METAPROBLEM: approximate a
“data”-tensor with a tensor from
some “lower-dimensional” mani-
fold /variety (approximation model).



Motivation

METAPROBLEM: approximate a
“data”-tensor with a tensor from
some “lower-dimensional” mani-
fold /variety (approximation model).

/4/’/; fik :ea-{'DOh.

Matrices (2D data): efficient approaches based on SVD.



Motivation

METAPROBLEM: approximate a
“data”-tensor with a tensor from
some “lower-dimensional” mani-
fold /variety (approximation model).

XV u—a-{:o:\.
ﬂ/’f"‘: dee
Matrices (2D data): efficient approaches based on SVD.
Tensors (3D and higher):



Motivation

METAPROBLEM: approximate a
“data”-tensor with a tensor from
some “lower-dimensional” mani-
fold /variety (approximation model).

XV u—a-{:o:\.
ﬂ/’f"‘: dee
Matrices (2D data): efficient approaches based on SVD.
Tensors (3D and higher): Tucker format,



Motivation

METAPROBLEM: approximate a
“data”-tensor with a tensor from
some “lower-dimensional” mani-
fold /variety (approximation model).

XV u—a-{:o:\.
ﬂ/’f"‘: dee
Matrices (2D data): efficient approaches based on SVD.
Tensors (3D and higher): Tucker format, CP model



Motivation

METAPROBLEM: approximate a
“data”-tensor with a tensor from
some “lower-dimensional” mani-
fold /variety (approximation model).

XV u—a-{:o:.
ﬂ/’f"‘: dee
Matrices (2D data): efficient approaches based on SVD.
Tensors (3D and higher): Tucker format, CP model

Applications:



Motivation

METAPROBLEM: approximate a
“data”-tensor with a tensor from
some “lower-dimensional” mani-
fold /variety (approximation model).

XV u—a-{:o:.
ﬂ/’f"‘: dee
Matrices (2D data): efficient approaches based on SVD.
Tensors (3D and higher): Tucker format, CP model

Applications: image/sound compression,



Motivation

METAPROBLEM: approximate a
“data”-tensor with a tensor from
some “lower-dimensional” mani-
fold /variety (approximation model).

XV u—a-{:o:.
ﬂ/’f"‘: dee
Matrices (2D data): efficient approaches based on SVD.
Tensors (3D and higher): Tucker format, CP model

Applications: image/sound compression,
data classification,



Motivation

METAPROBLEM: approximate a
“data”-tensor with a tensor from
some “lower-dimensional” mani-
fold /variety (approximation model).

XV u—a-{:o:\.
iz
Matrices (2D data): efficient approaches based on SVD.
Tensors (3D and higher): Tucker format, CP model

Applications: image/sound compression,
data classification, noise elimination, etc.
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Rank-one approximation problem

Given T € R” find a best rank-one approximation T* € S, to it,

IT-T = IT =5

min
SESH

Remark: NP-hard to decide if T* is a solution, already for d = 3.
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Singular Value Decomposition (SVD):

T = UXV', Ue€O(m), Ve O(n), X=dag(o1,...,0mnmm))
Left / Right singular vectors (columns of U / V/): eigenvectors of
TTT =UZXTUT :R™ - R™ / TTT=VXTZVT . R™ - R™,
Singular values 01 > 02 >+ = Opin(ny,n,) = 0: square roots of
(min(ny, ny) largest) eigenvalues of TTT (equivalently, of TTT).
Theorem (Eckart and Young, 1936)

A best rank-one approximation to a non-zero T = ULV is given
by T* = UX*VT, where ¥* = diag(01,0,...,0). Moreover,

IT-T* = \/a§+m+a2

min(ny,n2)

Mirsky, 1960: T* is a solution for a O(n1) x O(ny)-invariant norm.
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=1
is a multi-linear form on R™ x - .. x R" associated to the tensor T.

Critical points of distt are called critical rank-1 approximations.

| Characterization |: (x!,...,x9) is a critical point of Fr restricted
to Sm~1 x ... x §"1 with critical value o := Fr(x}, ..., x9) iff
ox!®---@x9 e S, is a critical rank-1 approximation to T.
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VoFr(u,v) = Tv = ou, VyFr(u,v) = TTu = ov,
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Definition

A singular vector tuple of a tensor T € R" is a critical point
(x},...,x9) of the restriction of Fr to the product of spheres
Sm—1 ... x S"1 that s,

VoFr(xd, ... x) =ox), j=1,...,d.

The number o = Fr(xt, ... x9) = () TV Fr(xt, ... x9) is the

associated singular value (can be made positive via x! +— £x).
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If (x},...,x%) is a singular vector tuple, then so is (£x!,..., +x9).
Algebraic geometer: study complex solutions of the system (*).
Definition A solution [x] := ([x!],...,[x9]) € Pt x ... x Pg:d_l
to (*) is a (projective) singular vector tuple.

Friedland and Ottaviani, 2014

A generic T € R" has sv(n) (projective) singular vector tuples
corresponding to non-zero singular values, where sv(n) is the

. . i—1 . .
coefficient of the monomial Hj‘-jzl zjnJ in the polynomials

J
(it +za+zm+ - +z)—z

d (21+"'+Zj_1+2j+1+"'+2d)"j—Z-nj

j=1
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Relation to the theory of ED degree

Let S C R" be a real algebraic variety and consider the (squared)
Euclidean distance to S from a generic point t € R™:

dist; :S — R, s — Z —s,

The number EDdeg(S) of “complex critical points” of dist; is
known as the Euclidean distance degree (ED degree) of S:

EDdeg(S) = # {s €SC\S85, i t—s L TSSC}
Observation: EDdeg(S) gives an upper bound on the number of

real critical of dist; ’S\Ssing for a generic t € R".

J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels and R. R. Thomas.
The Euclidean Distance Degree of an Algebraic Variety.
Foundations of Computational Mathematics, 16(1), 2013.

The result of Friedland and Ottaviani gives a formula for the ED
degree EDdeg(S,) = sv(n) of the Segre variety S, C R".
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Counting critical rank-1 approximations
The number of critical rank-1 approximations to a generic tensor
T € R" is upper-bounded by the coefficient sv(n) in front of

—1 . .
H}j:l zjnJ in the polynomial

ﬁ Zit+-tziatzitt2a) -z
etz bzt o+ zd) -

Jj=1

n=(ny,...,ng) sv(n)

(n1, ) min(ny, n2)

29 =(2,...,2) d!

(2,2.n > 3) 8

(2,3,3) 15

(2,3,n > 4) 18

(3,3,3) 37

(3,3,4) 55

(3.3.0>5) 61
ng>1-+ Z "Hnj—1) | stabilizes
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Question on optimality of the bound

Problem (to work on during the semester program)

Understand whether sv(n) gives a sharp bound on the number
of critical rank-one approximations to a generic T € R".
Equivalently, given n = (n1,...,ny) does there exist a T € R"
with only real sv(n) many singular vector tuples?

Note: any generic matrix T € R™ ® R™ has exactly min(ny, np)
critical rank-one approximations (Eckart-Young theorem).

n =---=ng =2 (to start with...)

Does there exist a multi-linear map F : R? x - - - x R> — R with
29d! many critical points on the torus TY = S x - .- xSt ¢ R?9?

Hint: T9 is parametrized by polar coordinates. So, look at

F(b1,...,04) = Z (xe cos(e1br + - - - + €404) + E-sin(e101 + - - + €4b4))
ec{—-1,1}d
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Rank-1 approximation problem in statistics
A tensor T € RZ, with non-negative entries satisfying
ZZ":l ti..i, = 1 defines a joint probability law

ty i, =P (X1 =1i1,...,Xq = ig)

of discrete random variables X, ..., Xy with nq,..., ngy atoms.

Moreover, T =x! @ --- @ x? is of rank 1 iff Xi,..., Xy are
statistically independent (with x/ being the law of X;).

Ap—1=R%yN {Z:’Zl ti i, = 1} — the probability simplex.
My =8,MNA,_1 —the independence model (rank-1 elts in A,_1).

How far is a tuple of random variables from being independent?

For a joint probability law T € A,_; determine the closest to it
independent law T* € M, that is, an independent law satisfying

IT-—T = Smin IT—S|.
EMp
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Affine ED degree

Let S C R” be a conic (invariant under scalings) variety, let
H C R” be an affine hypersurface and for a generic t € H consider
the restriction of the (squared) Euclidean distance

dist! :SNH = R, s — Z —5;)>

The number aEDdeg(S N H) of “complex critical points” of dist
is called the affine Euclidean distance degree of S N H:

aEDdeg(SNH) = #{s€ (SNH)"\ S5, 1 t—s L T,(SNH)"}.

Remark: numbers EDdeg(S) and aEDdeg(S N H) differ in general.

Observation: aEDdeg(S N H) gives an upper bound on the number
of real critical points of dist’t"|(3ﬂ,_,)\5. for a generict € H.

sing
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A critical rank-1 approximation to T € H (relative to H) is a
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Conjecture (Boege, Petrovi¢ and Sturmfels, 2021)

Given any T € A,_1, there is only 1 real critical point of dist#,
namely the closest to it independent law T* € M, C S, N H.

Example (T.Boege, S.Petrovié, B.Sturmfels. Marginal Independence Models)
EDdeg(S(2,2,2)) = 6, some T € Az 50y_1 has 4 real critical rank-1

approximations (in S 2)) . However, aEDdeg(S250) N H) = 17

and T* € M) is the only critical point ofdist’-"r.

Remark: conjecture is stated in a larger generality, when instead of

Mp =8N Ap_1 and S, N H one can take any marginal
independence model My C A,_1 and its Zariski closure in H.
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Any symmetric tensor T € Sym9(R") admits a symmetric best
rank-1 approximation T* € Vg . In particular,

IT-=T = min |[T=S|| = min | T-=-9|
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Rank-1 approximation problem of
symmetric tensors

A tensor T = (1.“,-1“.,;,),'-;":1 e R(™-n) is called symmetric, if
iy, iny = Lir..ig for any permutation ¢ on d letters.

The (sub)space space of symmetric tensors: Sym9(R") c R("-n).
The Veronese variety of symmetric rank-1 tensors:

Van =Sy N SymIR") = {Ax@ - @x : AeR, x/ € S}

Banach, 1938

Any symmetric tensor T € Sym9(R") admits a symmetric best
rank-1 approximation T* € Vg . In particular,

IT-T = min [T=S|| = min | T=F5]|
SEVq,n SES(n.....n)

Remark: (still) NP-hard to decide if T* is a solution, when d > 3.
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Critical symmetric rank-1 approximations

Critical symmetric rank-1 approximations to T € Sym?(R") are
critical points of the (squared) distance function

distt: Vy, — R,
S=Ax®---@x = [[T=5|? = ||IT|? =2MT,x®--- @x) + A2,

i.e., such Ax®---®x € Vyg,, that satisfy %foT(x) = \X, where

nj
f1(x) = (T,)x®---®x) = Zt,-lm,-dx,-l...x,-d
=1

is the homogeneous polynomial uniquely associated to T.

| Characterization |: x is a critical point of fr restricted to S~
with critical value A := f1(x) iff Ax® --- ®x € Vyg , is a critical
rank-1 approximation to T € Sym9(R").
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Eigenvectors of tensors
: x is a critical point of fT(x) = x' Tx on S"~! with value
A = fr(x) iff Tx = Ax (x is an eigenvector of T with eigenvalue ).
Definition
An eigenvector of a tensor T € R("" js a vector x € S"1 s.t.

n
FT(X17 s 7Xd) = Z til---idxii e X,-‘j“
ij=1
VxlfT(X,...,x) = X, ) .
vxl]'-T(X,...,X) = (Z tiiz---idXiZ"'Xid> .
ij:l i=1

Then A = F1(x,...,x) = f1(x) is the associated eigenvalue of T.

IfT e Symd(]R”) is symmetric, to be an eigenvector for x means
to be a critical point of the restriction of ft to S*1, that is,

%VXfT(x) = Ax
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Counting eigenpoints
Eigenvectors x € S"~1 are solutions to the system

n n
Z iy igXiy -+ - Xiy  + -+ tniy...igXiy - - - Xiy
(¥) rank | =1 i=1 < 1.
X1 . Xn

An eigenpoint of T € R("") is any [x] € ]P)gj_l that satisfies ().

The eigenconfiguration of T is the variety of its eigenpoints.
Cartwright and Sturmfels, 2013

A generic (a generic symmetric) tensor T € R(™" has

d-1)"-1 , . .
ev(d, n) = % eigenpoints in ]P’(?:_l.

ev(d, n) = EDdeg(Vy,5) is the ED degree of the Veronese variety.

Eigenpoints of a generic T are fixed points of the endomorphism
(holomorphic map) ¢ : P! — PZ7Y, [x] = [VaFr(x, ..., )]
Fornaess and Sibony, 1994 : a generic ¢ has ev(d, n) fixed points.
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For a generic T € R("~") the number of eigenpoints in IP’I'é_l is

upper-bounded by ev(d, n) = (d_dl_);_l-

In particular: the restriction of a generic form f € R[xy, ..., x,] of

degree d to the sphere S"~! has at most 2(d;1_);_1 critical points.

A generic matrix T € R” ® R” has n eigenvalues (ev(2,n) = n). If
T is symmetric, all eigenvalues, eigenvectors, eigenpoints are real.
A binary form f € R[x1, xo] with d = deg(f) distinct real roots has
2d = 2ev(d, 2) critical points on St

Abo, Seigal and Sturmfels, 2015: the product f € R[xy, x2, x3] of d
general linear forms has 2(d? — d +1) = 2ev(d, 3) crit. pts. on S?.

Conjecture (Abo, Seigal and Sturmfels, 2015)

Let 41,...,¢q € R" be non-zero vectors. Then in any (Euclidean)
neighborhood of f(x) = (¢{x) - - (£]x) there is a generic degree
d form with 20=1°=1 — 2ey(d, n) critical points on ™1
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P, o

(Af)(x) = 8X12 + -+ 87,2,

=0, xeR"
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For any point y € S"~! there exists a harmonic form Z4 n that is
invariant under orthogonal transformations preserving y. Actually,
Zgn(x) = Gd:n(yTx), where {Gy ,}4>0 is the family of orthogonal
polynomials on [—1,1] (called Gegenbauer polynomials).

Then for € ~ 0 the (n+ 1)-variate form fy , 11 = Zy ny1+ € fy , has

2+ 2ev(d, n)(d —1) 2(1+(d_1)n_1(d—1)>

d—2
—_ 1)+l _
= 2(dc:/l)—21 = 2eV(d,n+1)

critical points on the n-dimensional sphere S".



lllustrative example (spherical plot)

Z3 3, a harmonic form £ with 2ev(3,2) = 6 critical points on S and the
perturbation f33 = Z3 3 + € f32 with 2evs 3 = 14 critical points on S2.
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Fact: for a generic form f, the function f|g.—1 is Morse.

Problem

How large can numbers Io(f), h(f), ..., I,—1(f) be for a generic
form f € R[xq, ..., x,] of degree d?
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Problem: compute/estimate the largest possible (relative) best
rank-one approximation error over all tensors of format n x --- X n,

IT-T_ [ TR
] e

max

Equivalently: compute the best rank-one approximation ratio

o Tl _ 1 d
Adn = Tnéllg"W’ [T oo —Xjrgglf_l |Fr(x, .. x9)].

Aq.n governs the convergence rate of greedy rank-one update
algorithm. Was introduced in this context by Qi in 2011.

(K+1)

T(o)_____ T i __Tlx) _[_(w;-
KJ-_(
TlKH < IT K)//2(£ ‘Ag‘,h < //T// ({'ﬂd



Symmetric best rank-1 approximation ratio



Symmetric best rank-1 approximation ratio

Banach:



Symmetric best rank-1 approximation ratio

Banach: a symmetric T € Sym?(R") has a symmetric best rank-1
approximation T, = Ax® ---®x, A€R, x € sn-1,



Symmetric best rank-1 approximation ratio

Banach: a symmetric T € Sym?(R") has a symmetric best rank-1
approximation T, = Ax® ---®x, A€R, x € S" 1 In particular,

[Tlloe = max_[fr(x)|
xeSn—1



Symmetric best rank-1 approximation ratio

Banach: a symmetric T € Sym?(R") has a symmetric best rank-1
approximation T, = Ax® ---®x, A€R, x € S" 1 In particular,

[Tlloe = max_[fr(x)|
xeSn—1

Symmetric best rank-1 approximation ratio:



Symmetric best rank-1 approximation ratio

Banach: a symmetric T € Sym?(R") has a symmetric best rank-1
approximation T, = Ax® ---®x, A€R, x € S" 1 In particular,

[Tlloe = max_[fr(x)|
xeSn—1

Symmetric best rank-1 approximation ratio:

[T oo
Tesymd(r) || Tl

sym . __
‘Ad,n T



Symmetric best rank-1 approximation ratio

Banach: a symmetric T € Sym?(R") has a symmetric best rank-1
approximation T, = Ax® ---®x, A€R, x € S" 1 In particular,

[Tlloe = max_[fr(x)|
xeSn—1

Symmetric best rank-1 approximation ratio:

[T oo
Tesymd(r) || Tl

sym . __
‘Ad,n T

A symmetric T minimizes the ratio || T||o/||T||



Symmetric best rank-1 approximation ratio

Banach: a symmetric T € Sym?(R") has a symmetric best rank-1
approximation T, = Ax® ---®x, A€R, x € S" 1 In particular,

[Tlloe = max_[fr(x)|
xeSn—1

Symmetric best rank-1 approximation ratio:

[T oo
Tesymd(r) || Tl

Asym -
7n '
A symmetric T minimizes the ratio || T||oo/|| T|| iff it has the worst
relative approximation ratio

=T _ f; ATIE
T ITI2

among all symmetric tensor in Sym?(R").
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Li, Nakatsukasa, Soma, Uschmajew, 2018: when d > 3, the
left lower bound is tight if and only if n =1,2,4 or 8. In such
cases for d = 3, multiplication tensors of the 4 composition
algebras (R, C, H, Q) are minimizers of the norm ratio.

— Mo
Agrachev, K., Uschmajew, 2019: for n = 2, \/20,71— il for

T e Sym?(R?) iff the binary form fr, up to scalar multiplications
and orthogonal transformations, coincides with Re(xq + ix2)9.

1
For (3, 3, 3)-tensors Azz = Asym = —
( ) V7
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into rank-one tensors T1,..., T, € S, is called orthogonal, if T;'s

are pairwise orthogonal, (T;,T;) =0, i # j. The orthogonal rank

rk(T) of T is the smallest possible r in the above decomposition.
Theorem (Li, Nakatsukasa, Soma, Uschmajew, 2017)

One has the following lower bound:

1

Adn >
= Jmax{rki(T) : T € R}

Conjecture (Uschmajew)

The equality holds Ay, = Vmax{rkj(T):TeRn}.




Qualitative bounds



Qualitative bounds

Theorem (K. and Tonelli-Cueto, 2022+ ; Li et al., 2018)



Qualitative bounds

Theorem (K. and Tonelli-Cueto, 2022+ ; Li et al., 2018)
For any d > 3 and n > 2 we have



Qualitative bounds

Theorem (K. and Tonelli-Cueto, 2022+ ; Li et al., 2018)
For any d > 3 and n > 2 we have

1 1Tl Vdind

< -Ad,n < ETER" < 10

T = " Vpd1

i

nd—



Qualitative bounds

Theorem (K. and Tonelli-Cueto, 2022+ ; Li et al., 2018)
For any d > 3 and n > 2 we have

1 1Tl Vdind

< -Ad,n < ETER" < 10

T = " Vpd1

i

nd—

Corollary:



Qualitative bounds

Theorem (K. and Tonelli-Cueto, 2022+ ; Li et al., 2018)
For any d > 3 and n > 2 we have

1 1Tl Vdind

< -Ad,n < ETER" < 10

T = " Vpd1

i

nd—

Corollary: in particular,



Qualitative bounds

Theorem (K. and Tonelli-Cueto, 2022+ ; Li et al., 2018)
For any d > 3 and n > 2 we have

1 1Tl Vdind

< -Ad,n < ETER" < 10

T = " Vpd1

i

nd—

Corollary: in particular,




Qualitative bounds

Theorem (K. and Tonelli-Cueto, 2022+ ; Li et al., 2018)
For any d > 3 and n > 2 we have

1 Tl Vdind
vV nd—1 " TeR Tl v nd-1

Corollary: in particular,

1
Adn = O(\/ﬁ) as n— oo.

The best rank-1 approximation ratio is of the same order of
magnitude as the trivial lower bound when n — oc.
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Theorem (K., Tonelli-Cueto, 2022+)
For all d > 3 and n > 2 we have

|
L <o < [Thoo . 12Vnind _ , [dlind

a1 = = TESymﬂ Tl (n+d71) = nd—1
d

In particular, for a fixed d > 3 and n — oo

1
sym
.A O( Td 1> = Ad,n'

IMPORTANT COROLLARY:

Symmetric tensors are as far from being rank-1 as general tensors.



Thank you!



