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Motivation

METAPROBLEM: approximate a
“data”-tensor with a tensor from
some “lower-dimensional” mani-
fold/variety (approximation model).

Matrices (2D data): efficient approaches based on SVD.
Tensors (3D and higher): Tucker format, CP model

Applications: image/sound compression,
data classification, noise elimination, etc.
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Part 1.

Rank-one approximations of general tensors



Framework and problem statement

The space of (real) tensors of size n1 × · · · × nd :

Rn = Rn1 ⊗ · · · ⊗ Rnd =
{

T = (ti1...id )
nj
ij=1 : ti1...id ∈ R

}
The Segre variety of rank-one tensors:

Sn =
{
σ x1 ⊗ · · · ⊗ xd =

(
σ x1

i1 . . . x
d
id

)nj
ij=1

: σ ∈ R, x j ∈ Snj−1
}

The Frobenius product and norm:

〈T, S〉 =
∑nj

ij=1
ti1...id si1...id , ‖T‖ =

√
〈T,T〉

Rank-one approximation problem

Given T ∈ Rn find a best rank-one approximation T∗ ∈ Sn to it,

‖T− T∗‖ = min
S∈Sn
‖T− S‖.

Remark: NP-hard to decide if T∗ is a solution, already for d = 3.
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Matrix case (d = 2)

Singular Value Decomposition (SVD):

T = UΣVT, U ∈ O(n1), V ∈ O(n2), Σ = diag
(
σ1, . . . , σmin(n1,n2)

)
Left / Right singular vectors (columns of U / V ): eigenvectors of
TTT = UΣΣTUT : Rn1 → Rn1 / TTT = VΣTΣVT : Rn2 → Rn2 .

Singular values σ1 ≥ σ2 ≥ · · · ≥ σmin(n1,n2) ≥ 0: square roots of

(min(n1, n2) largest) eigenvalues of TTT (equivalently, of TTT).

Theorem (Eckart and Young, 1936)

A best rank-one approximation to a non-zero T = UΣVT is given
by T∗ = UΣ∗VT, where Σ∗ = diag(σ1, 0, . . . , 0). Moreover,

‖T− T∗‖ =
√
σ2

2 + · · ·+ σ2
min(n1,n2)

Mirsky, 1960: T∗ is a solution for a O(n1)×O(n2)-invariant norm.
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Critical rank-one approximations

A best rank-1 approximation to T minimizes the (squared) distance

distT : Sn → R,
S = σ x1 ⊗ · · · ⊗ xd 7→ ‖T− S‖2 = ‖T‖2 − 2σ〈T, x1 ⊗ · · · ⊗ xd〉+ σ2

It is a critical point of distT, that is,

∇x jFT(x1, . . . , xd) = σ xj , where

FT(x1, . . . , xd) := 〈T, x1 ⊗ · · · ⊗ xd〉 =

nj∑
ij=1

ti1...id x
1
i1 . . . x

d
id

is a multi-linear form on Rn1 ×· · ·×Rnd associated to the tensor T.
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Singular vector tuples

If T ∈ Rn1 ⊗Rn2 is a matrix, then FT(u, v) = uTTv and conditions

∇uFT(u, v) = Tv = σu, ∇vFT(u, v) = TTu = σv,

retrieve a pair (u, v) ∈ Sn1−1 × Sn2−1 of singular vectors with
singular value σ = uTTv (recall that TV = ΣU and TTU = ΣTV).
In particular, σuvT ∈ S(n1,n2) is a critical rank-1 approximation.

Definition
A singular vector tuple of a tensor T ∈ Rn is a critical point
(x1, . . . , xd) of the restriction of FT to the product of spheres
Sn1−1 × · · · × Snd−1, that is,

∇x jFT(x1, . . . , xd) = σ x j , j = 1, . . . , d .

The number σ = FT(x1, . . . , xd) = (x j)T∇x jFT(x1, . . . , xd) is the
associated singular value (can be made positive via x1 7→ ±x1).
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Counting singular vector tuples

Singular vector tuples: solutions in Sn−1 := Sn1−1 × · · · × Snd−1 of

(∗) rank

(∂FT

∂x j
1

(x) . . . ∂FT

∂x j
nj

(x)

x j
1 . . . x j

nj

)
≤ 1, j = 1, . . . , d .

If (x1, . . . , xd) is a singular vector tuple, then so is (±x1, . . . ,±xd).

Algebraic geometer: study complex solutions of the system (*).

Definition A solution [x] := ([x1], . . . , [xd ]) ∈ Pn1−1
C × · · · × Pnd−1

C
to (*) is a (projective) singular vector tuple.

Friedland and Ottaviani, 2014

A generic T ∈ Rn has sv(n) (projective) singular vector tuples
corresponding to non-zero singular values, where sv(n) is the

coefficient of the monomial
∏d

j=1 z
nj−1
j in the polynomials

d∏
j=1

(z1 + · · ·+ zj−1 + zj+1 + · · ·+ zd)nj − z
nj
j

(z1 + · · ·+ zj−1 + zj+1 + · · ·+ zd)− zj
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Relation to the theory of ED degree

Let S ⊂ Rn be a real algebraic variety and consider the (squared)
Euclidean distance to S from a generic point t ∈ Rn:

distt : S → R, s 7→
n∑

i=1

(ti − si )
2.

The number EDdeg(S) of “complex critical points” of distt is
known as the Euclidean distance degree (ED degree) of S:

EDdeg(S) = #
{

s ∈ SC \ SCsing : t− s ⊥ TsSC
}

Observation: EDdeg(S) gives an upper bound on the number of
real critical of distt |S\Ssing

for a generic t ∈ Rn.

J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels and R. R. Thomas.
The Euclidean Distance Degree of an Algebraic Variety.

Foundations of Computational Mathematics, 16(1), 2013.

The result of Friedland and Ottaviani gives a formula for the ED
degree EDdeg(Sn) = sv(n) of the Segre variety Sn ⊂ Rn.
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Counting critical rank-1 approximations

The number of critical rank-1 approximations to a generic tensor
T ∈ Rn is upper-bounded by the coefficient sv(n) in front of∏d

j=1 z
nj−1
j in the polynomial

d∏
j=1

(z1 + · · ·+ zj−1 + zj+1 + · · ·+ zd)nj − z
nj
j

(z1 + · · ·+ zj−1 + zj+1 + · · ·+ zd)− zj

n = (n1, . . . , nd) sv(n)

(n1, n2) min(n1, n2)

2d = (2, . . . , 2) d!

(2, 2, n ≥ 3) 8

(2, 3, 3) 15

(2, 3, n ≥ 4) 18

(3, 3, 3) 37

(3, 3, 4) 55

(3, 3, n ≥ 5) 61

nd ≥ 1 +
∑d−1

j=1 (nj − 1) stabilizes
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Question on optimality of the bound

Problem (to work on during the semester program)

Understand whether sv(n) gives a sharp bound on the number
of critical rank-one approximations to a generic T ∈ Rn.
Equivalently, given n = (n1, . . . , nd) does there exist a T ∈ Rn

with only real sv(n) many singular vector tuples?

Note: any generic matrix T ∈ Rn1 ⊗ Rn2 has exactly min(n1, n2)
critical rank-one approximations (Eckart-Young theorem).

n1 = · · · = nd = 2 (to start with...)

Does there exist a multi-linear map F : R2× · · · ×R2 → R with
2dd! many critical points on the torus Td = S1×· · ·×S1 ⊂ R2d?

Hint: Td is parametrized by polar coordinates. So, look at

F(θ1, . . . , θd) =
∑

ε∈{−1,1}d
(χε cos(ε1θ1 + · · ·+ εdθd) + ξε sin(ε1θ1 + · · ·+ εdθd))
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Note: any generic matrix T ∈ Rn1 ⊗ Rn2 has exactly min(n1, n2)
critical rank-one approximations (Eckart-Young theorem).

n1 = · · · = nd = 2 (to start with...)

Does there exist a multi-linear map F : R2× · · · ×R2 → R with
2dd! many critical points on the torus Td = S1×· · ·×S1 ⊂ R2d?
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Rank-1 approximation problem in statistics

A tensor T ∈ Rn
≥0 with non-negative entries satisfying∑nj

ij=1 ti1...id = 1 defines a joint probability law

ti1...id = P (X1 = i1, . . . ,Xd = id)

of discrete random variables X1, . . . ,Xd with n1, . . . , nd atoms.

Moreover, T = x1 ⊗ · · · ⊗ xd is of rank 1 iff X1, . . . ,Xd are
statistically independent (with x j being the law of Xj).

∆n−1 = Rn
≥0 ∩

{∑nj
ij=1 ti1...id = 1

}
– the probability simplex.

Mn = Sn ∩∆n−1 – the independence model (rank-1 elts in ∆n−1).

How far is a tuple of random variables from being independent?

For a joint probability law T ∈ ∆n−1 determine the closest to it
independent law T∗ ∈Mn, that is, an independent law satisfying

‖T− T∗‖ = min
S∈Mn

‖T− S‖.
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Affine ED degree

Let S ⊂ Rn be a conic (invariant under scalings) variety, let
H ⊂ Rn be an affine hypersurface and for a generic t ∈ H consider
the restriction of the (squared) Euclidean distance

distHt : S ∩ H → R, s 7→
n∑

i=1

(ti − si )
2.

The number aEDdeg(S ∩ H) of “complex critical points” of distHt
is called the affine Euclidean distance degree of S ∩ H:

aEDdeg(S ∩ H) = #
{

s ∈ (S ∩ H)C \ SCsing : t− s ⊥ Ts(S ∩ H)C
}
.

Remark: numbers EDdeg(S) and aEDdeg(S ∩ H) differ in general.

Observation: aEDdeg(S ∩H) gives an upper bound on the number
of real critical points of distHt |(S∩H)\Ssing

for a generic t ∈ H.



Affine ED degree

Let S ⊂ Rn be a conic (invariant under scalings) variety,

let
H ⊂ Rn be an affine hypersurface and for a generic t ∈ H consider
the restriction of the (squared) Euclidean distance

distHt : S ∩ H → R, s 7→
n∑

i=1

(ti − si )
2.

The number aEDdeg(S ∩ H) of “complex critical points” of distHt
is called the affine Euclidean distance degree of S ∩ H:

aEDdeg(S ∩ H) = #
{

s ∈ (S ∩ H)C \ SCsing : t− s ⊥ Ts(S ∩ H)C
}
.

Remark: numbers EDdeg(S) and aEDdeg(S ∩ H) differ in general.

Observation: aEDdeg(S ∩H) gives an upper bound on the number
of real critical points of distHt |(S∩H)\Ssing

for a generic t ∈ H.



Affine ED degree

Let S ⊂ Rn be a conic (invariant under scalings) variety, let
H ⊂ Rn be an affine hypersurface

and for a generic t ∈ H consider
the restriction of the (squared) Euclidean distance

distHt : S ∩ H → R, s 7→
n∑

i=1

(ti − si )
2.

The number aEDdeg(S ∩ H) of “complex critical points” of distHt
is called the affine Euclidean distance degree of S ∩ H:

aEDdeg(S ∩ H) = #
{

s ∈ (S ∩ H)C \ SCsing : t− s ⊥ Ts(S ∩ H)C
}
.

Remark: numbers EDdeg(S) and aEDdeg(S ∩ H) differ in general.

Observation: aEDdeg(S ∩H) gives an upper bound on the number
of real critical points of distHt |(S∩H)\Ssing

for a generic t ∈ H.



Affine ED degree

Let S ⊂ Rn be a conic (invariant under scalings) variety, let
H ⊂ Rn be an affine hypersurface and for a generic t ∈ H consider
the restriction of the (squared) Euclidean distance

distHt : S ∩ H → R, s 7→
n∑

i=1

(ti − si )
2.

The number aEDdeg(S ∩ H) of “complex critical points” of distHt
is called the affine Euclidean distance degree of S ∩ H:

aEDdeg(S ∩ H) = #
{

s ∈ (S ∩ H)C \ SCsing : t− s ⊥ Ts(S ∩ H)C
}
.

Remark: numbers EDdeg(S) and aEDdeg(S ∩ H) differ in general.

Observation: aEDdeg(S ∩H) gives an upper bound on the number
of real critical points of distHt |(S∩H)\Ssing

for a generic t ∈ H.



Affine ED degree

Let S ⊂ Rn be a conic (invariant under scalings) variety, let
H ⊂ Rn be an affine hypersurface and for a generic t ∈ H consider
the restriction of the (squared) Euclidean distance

distHt : S ∩ H → R, s 7→
n∑

i=1

(ti − si )
2.

The number aEDdeg(S ∩ H) of “complex critical points” of distHt
is called the affine Euclidean distance degree of S ∩ H:

aEDdeg(S ∩ H) = #
{

s ∈ (S ∩ H)C \ SCsing : t− s ⊥ Ts(S ∩ H)C
}
.

Remark: numbers EDdeg(S) and aEDdeg(S ∩ H) differ in general.

Observation: aEDdeg(S ∩H) gives an upper bound on the number
of real critical points of distHt |(S∩H)\Ssing

for a generic t ∈ H.



Affine ED degree

Let S ⊂ Rn be a conic (invariant under scalings) variety, let
H ⊂ Rn be an affine hypersurface and for a generic t ∈ H consider
the restriction of the (squared) Euclidean distance

distHt : S ∩ H → R, s 7→
n∑

i=1

(ti − si )
2.

The number aEDdeg(S ∩ H) of “complex critical points” of distHt
is called the affine Euclidean distance degree of S ∩ H:

aEDdeg(S ∩ H) = #
{

s ∈ (S ∩ H)C \ SCsing : t− s ⊥ Ts(S ∩ H)C
}
.

Remark: numbers EDdeg(S) and aEDdeg(S ∩ H) differ in general.

Observation: aEDdeg(S ∩H) gives an upper bound on the number
of real critical points of distHt |(S∩H)\Ssing

for a generic t ∈ H.



Affine ED degree

Let S ⊂ Rn be a conic (invariant under scalings) variety, let
H ⊂ Rn be an affine hypersurface and for a generic t ∈ H consider
the restriction of the (squared) Euclidean distance

distHt : S ∩ H → R, s 7→
n∑

i=1

(ti − si )
2.

The number aEDdeg(S ∩ H) of “complex critical points” of distHt
is called the affine Euclidean distance degree of S ∩ H:

aEDdeg(S ∩ H) = #
{

s ∈ (S ∩ H)C \ SCsing : t− s ⊥ Ts(S ∩ H)C
}
.

Remark: numbers EDdeg(S) and aEDdeg(S ∩ H) differ in general.

Observation: aEDdeg(S ∩H) gives an upper bound on the number
of real critical points of distHt |(S∩H)\Ssing

for a generic t ∈ H.



Affine ED degree

Let S ⊂ Rn be a conic (invariant under scalings) variety, let
H ⊂ Rn be an affine hypersurface and for a generic t ∈ H consider
the restriction of the (squared) Euclidean distance

distHt : S ∩ H → R, s 7→
n∑

i=1

(ti − si )
2.

The number aEDdeg(S ∩ H) of “complex critical points” of distHt
is called the affine Euclidean distance degree of S ∩ H:

aEDdeg(S ∩ H) = #
{

s ∈ (S ∩ H)C \ SCsing : t− s ⊥ Ts(S ∩ H)C
}
.

Remark:

numbers EDdeg(S) and aEDdeg(S ∩ H) differ in general.

Observation: aEDdeg(S ∩H) gives an upper bound on the number
of real critical points of distHt |(S∩H)\Ssing

for a generic t ∈ H.



Affine ED degree

Let S ⊂ Rn be a conic (invariant under scalings) variety, let
H ⊂ Rn be an affine hypersurface and for a generic t ∈ H consider
the restriction of the (squared) Euclidean distance

distHt : S ∩ H → R, s 7→
n∑

i=1

(ti − si )
2.

The number aEDdeg(S ∩ H) of “complex critical points” of distHt
is called the affine Euclidean distance degree of S ∩ H:

aEDdeg(S ∩ H) = #
{

s ∈ (S ∩ H)C \ SCsing : t− s ⊥ Ts(S ∩ H)C
}
.

Remark: numbers EDdeg(S) and aEDdeg(S ∩ H) differ in general.

Observation: aEDdeg(S ∩H) gives an upper bound on the number
of real critical points of distHt |(S∩H)\Ssing

for a generic t ∈ H.



Affine ED degree

Let S ⊂ Rn be a conic (invariant under scalings) variety, let
H ⊂ Rn be an affine hypersurface and for a generic t ∈ H consider
the restriction of the (squared) Euclidean distance

distHt : S ∩ H → R, s 7→
n∑

i=1

(ti − si )
2.

The number aEDdeg(S ∩ H) of “complex critical points” of distHt
is called the affine Euclidean distance degree of S ∩ H:

aEDdeg(S ∩ H) = #
{

s ∈ (S ∩ H)C \ SCsing : t− s ⊥ Ts(S ∩ H)C
}
.

Remark: numbers EDdeg(S) and aEDdeg(S ∩ H) differ in general.

Observation:

aEDdeg(S ∩H) gives an upper bound on the number
of real critical points of distHt |(S∩H)\Ssing

for a generic t ∈ H.



Affine ED degree

Let S ⊂ Rn be a conic (invariant under scalings) variety, let
H ⊂ Rn be an affine hypersurface and for a generic t ∈ H consider
the restriction of the (squared) Euclidean distance

distHt : S ∩ H → R, s 7→
n∑

i=1

(ti − si )
2.

The number aEDdeg(S ∩ H) of “complex critical points” of distHt
is called the affine Euclidean distance degree of S ∩ H:

aEDdeg(S ∩ H) = #
{

s ∈ (S ∩ H)C \ SCsing : t− s ⊥ Ts(S ∩ H)C
}
.

Remark: numbers EDdeg(S) and aEDdeg(S ∩ H) differ in general.

Observation: aEDdeg(S ∩H) gives an upper bound on the number
of real critical points of distHt |(S∩H)\Ssing

for a generic t ∈ H.



Conjecturally, probability tensors have
unique critical rank-one approximation

H =
{

T ∈ Rn :
∑nj

ij=1 ti1...id = 1
}

– the affine span of ∆n−1.

A critical rank-1 approximation to T ∈ H (relative to H) is a
critical point of distHT : Sn ∩ H → R, S 7→ ‖T− S‖2.

Conjecture (Boege, Petrović and Sturmfels, 2021)

Given any T ∈ ∆n−1, there is only 1 real critical point of distHT ,
namely the closest to it independent law T∗ ∈Mn ⊂ Sn ∩ H.

Example (T.Boege, S.Petrović, B.Sturmfels. Marginal Independence Models)

EDdeg(S(2,2,2)) = 6, some T ∈ ∆(2,2,2)−1 has 4 real critical rank-1
approximations (in S(2,2,2)) . However, aEDdeg(S(2,2,2) ∩ H) = 17

and T∗ ∈M(2,2,2) is the only critical point of distHT.

Remark: conjecture is stated in a larger generality, when instead of
Mn = Sn ∩∆n−1 and Sn ∩ H one can take any marginal
independence model MΣ ⊂ ∆n−1 and its Zariski closure in H.
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Part 2.

Rank-one approximations of symmetric tensors



Rank-1 approximation problem of
symmetric tensors

A tensor T = (ti1...id )
nj
ij=1 ∈ R(n,...,n) is called symmetric, if

tiσ1 ...iσd
= ti1...id for any permutation σ on d letters.

The (sub)space space of symmetric tensors: Symd(Rn) ⊂ R(n,...,n).

The Veronese variety of symmetric rank-1 tensors:

Vd,n = S(n,...,n) ∩ Symd(Rn) =
{
λ x⊗ · · · ⊗ x : λ ∈ R, x j ∈ Sn−1

}
Banach, 1938

Any symmetric tensor T ∈ Symd(Rn) admits a symmetric best
rank-1 approximation T∗ ∈ Vd ,n. In particular,

‖T− T∗‖ = min
S∈Vd,n

‖T− S‖ = min
S∈S(n,...,n)

‖T− S‖

Remark: (still) NP-hard to decide if T∗ is a solution, when d ≥ 3.
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Critical symmetric rank-1 approximations

Critical symmetric rank-1 approximations to T ∈ Symd(Rn) are
critical points of the (squared) distance function

dist T : Vd ,n → R,
S = λ x⊗ · · · ⊗ x 7→ ‖T− S‖2 = ‖T‖2 − 2λ〈T, x⊗ · · · ⊗ x〉+ λ2,

i.e., such λ x⊗ · · · ⊗ x ∈ Vd ,n that satisfy 1
d∇xfT(x) = λ x, where

fT(x) = 〈T, x⊗ · · · ⊗ x〉 =

nj∑
ij=1

ti1...id xi1 . . . xid

is the homogeneous polynomial uniquely associated to T.

Characterization : x is a critical point of fT restricted to Sn−1

with critical value λ := fT(x) iff λ x⊗ · · · ⊗ x ∈ Vd ,n is a critical
rank-1 approximation to T ∈ Symd(Rn).
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Eigenvectors of tensors

d = 2 : x is a critical point of fT(x) = xTTx on Sn−1 with value
λ = fT(x) iff Tx = λx (x is an eigenvector of T with eigenvalue λ).

Definition
An eigenvector of a tensor T ∈ R(n,...,n) is a vector x ∈ Sn−1 s.t.

∇x1FT(x, . . . , x) = λ x,

FT(x1, . . . , xd) =
n∑

ij=1

ti1...id x
1
i1 . . . x

d
id ,

∇x1FT(x, . . . , x) =

 n∑
ij=1

tii2...id xi2 . . . xid

n

i=1

.

Then λ = FT(x, . . . , x) = fT(x) is the associated eigenvalue of T.

If T ∈ Symd(Rn) is symmetric, to be an eigenvector for x means
to be a critical point of the restriction of fT to Sn−1, that is,

1

d
∇xfT(x) = λ x.
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Counting eigenpoints

Eigenvectors x ∈ Sn−1 are solutions to the system

(∗) rank

 n∑
ij=1

t1i2...id xi2 . . . xid . . .
n∑

ij=1

tni2...id xi2 . . . xid

x1 . . . xn

 ≤ 1.

An eigenpoint of T ∈ R(n,...,n) is any [x] ∈ Pn−1
C that satisfies (∗).

The eigenconfiguration of T is the variety of its eigenpoints.

Cartwright and Sturmfels, 2013

A generic (a generic symmetric) tensor T ∈ R(n,...,n) has

ev(d , n) = (d−1)n−1
d−2 eigenpoints in Pn−1

C .

ev(d , n) = EDdeg(Vd ,n) is the ED degree of the Veronese variety.

Eigenpoints of a generic T are fixed points of the endomorphism
(holomorphic map) ψT : Pn−1

C → Pn−1
C , [x] 7→ [∇x1FT(x, . . . , x)].

Fornaess and Sibony, 1994 : a generic ψT has ev(d , n) fixed points.
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Counting real eigenpoints
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upper-bounded by ev(d , n) = (d−1)n−1
d−2 .

In particular: the restriction of a generic form f ∈ R[x1, . . . , xn] of
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d−2 critical points.

A generic matrix T ∈ Rn ⊗ Rn has n eigenvalues (ev(2, n) = n). If
T is symmetric, all eigenvalues, eigenvectors, eigenpoints are real.

A binary form f ∈ R[x1, x2] with d = deg(f ) distinct real roots has
2d = 2 ev(d , 2) critical points on S1.

Abo, Seigal and Sturmfels, 2015: the product f ∈ R[x1, x2, x3] of d
general linear forms has 2(d2− d + 1) = 2 ev(d , 3) crit. pts. on S2.

Conjecture (Abo, Seigal and Sturmfels, 2015)
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Sketch of the proof (induction on n)

n=2 : the form f (x1, x2) = Re(x1 + ix2)d (in polar coordinates
f (cos θ, sin θ) = cos(dθ)) is the unique (up to rotations and scalar
multiplications) harmonic. Trivially, f |S1 has 2d critical points.

Suppose fd ,n is such that fd ,n|Sn−1 has 2 ev(d , n) critical points.

For any point y ∈ Sn−1 there exists a harmonic form Zd ,n that is
invariant under orthogonal transformations preserving y. Actually,
Zd ,n(x) = Gd ,n(yTx), where {Gd ,n}d≥0 is the family of orthogonal
polynomials on [−1, 1] (called Gegenbauer polynomials).

Then for ε ∼ 0 the (n+ 1)-variate form fd ,n+1 = Zd ,n+1 + ε fd ,n has

2 + 2 ev(d , n) (d − 1) = 2

(
1 +

(d − 1)n − 1

d − 2
(d − 1)

)
= 2

(d − 1)n+1 − 1

d − 2
= 2 ev(d , n + 1)

critical points on the n-dimensional sphere Sn.
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Illustrative example (spherical plot)

Z3,3, a harmonic form f3,2 with 2 ev(3, 2) = 6 critical points on S1 and the
perturbation f3,3 = Z3,3 + ε f3,2 with 2 ev3,3 = 14 critical points on S2.



Critical points of fixed index

A smooth function f : Sn−1 → R is Morse, if every its critical point
x is non-degenerate, that is, in (any) local coordinates θ1, . . . , θn−1

around x, the Hessian Hx(f ) =
(

∂2f
∂θi∂θj

(x)
)n−1

i ,j=1
has rank n − 1.

The number of negative eigenvalues of Hx(f ) is known as the index
of a non-degenerate critical point x ∈ Sn−1 of f .

For k = 0, 1 . . . , n − 1 let Ik(f ) be the number of critical points of
a Morse function f : Sn−1 → R that have index k .

For example, I0(f ) is the number of local minima of f and In−1(f )
is the number of local maxima. The total number of critical points
is
∑n−1

k=0 Ik(f ) and
∑n−1

k=0(−1)k Ik(f ) = 1 + (−1)n−1 holds.

Fact: for a generic form f , the function f |Sn−1 is Morse.

Problem

How large can numbers I0(f ), I1(f ), . . . , In−1(f ) be for a generic
form f ∈ R[x1, . . . , xn] of degree d?
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Part 3.
Quality of rank-one approximations



Best rank-1 approximation ratio

Problem: compute/estimate the largest possible (relative) best
rank-one approximation error over all tensors of format n× · · · × n,

‖T− T∗‖
‖T‖

=

√
1− ‖T‖

2
∞

‖T‖2
−→ max

Equivalently: compute the best rank-one approximation ratio

Ad ,n := min
T∈Rn

‖T‖∞
‖T‖

, ‖T‖∞ = max
x j∈ Sn−1

|FT(x1, . . . , xd)|.

Ad ,n governs the convergence rate of greedy rank-one update
algorithm. Was introduced in this context by Qi in 2011.
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Symmetric best rank-1 approximation ratio

Banach: a symmetric T ∈ Symd(Rn) has a symmetric best rank-1
approximation T∗ = λ x⊗ · · · ⊗ x, λ ∈ R, x ∈ Sn−1. In particular,

‖T‖∞ = max
x∈Sn−1

|fT(x)|

Symmetric best rank-1 approximation ratio:

A sym
d ,n := min

T∈ Symd (Rn)

‖T‖∞
‖T‖

A symmetric T minimizes the ratio ‖T‖∞/‖T‖ iff it has the worst
relative approximation ratio

‖T− T∗‖
‖T‖

=

√
1− ‖T‖

2
∞

‖T‖2

among all symmetric tensor in Symd(Rn).
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Some known facts about Ad ,n and A sym
d ,n

Matrix case (d = 2): A2,n = A sym
2,n = 1

n and minimizers of

‖T‖∞/‖T‖ are matrices satisfying TTT = σ idn (σ1 = · · · = σn).

Trivial bounds:

1√
nd−1

≤ Ad,n = min
T∈Rn

‖T‖∞
‖T‖

≤ A sym
d,n = min

T∈ Symd (Rn)

‖T‖∞
‖T‖

≤ 1

Li, Nakatsukasa, Soma, Uschmajew, 2018: when d ≥ 3, the
left lower bound is tight if and only if n = 1, 2, 4 or 8. In such
cases for d = 3, multiplication tensors of the 4 composition
algebras (R, C, H, O) are minimizers of the norm ratio.

Agrachev, K., Uschmajew, 2019: for n = 2, 1√
2d−1

= ‖T‖∞
‖T‖ for

T ∈ Symd(R2) iff the binary form fT, up to scalar multiplications
and orthogonal transformations, coincides with Re(x1 + ix2)d .

For (3, 3, 3)-tensors A3,3 = A sym
3,3 =

1√
7
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left lower bound is tight if and only if n = 1, 2, 4 or 8. In such
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algebras (R, C, H, O) are minimizers of the norm ratio.
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for n = 2, 1√
2d−1

= ‖T‖∞
‖T‖ for
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Bounds from orthogonal rank

A decomposition of a tensor T ∈ Rn

T = T1 + · · ·+ Tr ,

into rank-one tensors T1, . . . ,Tr ∈ Sn is called orthogonal, if Ti ’s
are pairwise orthogonal, 〈Ti ,Tj〉 = 0, i 6= j . The orthogonal rank
rk⊥(T) of T is the smallest possible r in the above decomposition.

Theorem (Li, Nakatsukasa, Soma, Uschmajew, 2017)

One has the following lower bound:

Ad ,n ≥
1√

max{rk⊥(T) : T ∈ Rn}

Conjecture (Uschmajew)

The equality holds Ad ,n = 1√
max{rk⊥(T) : T∈Rn}

.
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Qualitative bounds

Theorem (K. and Tonelli-Cueto, 2022+ ; Li et al., 2018)

For any d ≥ 3 and n ≥ 2 we have

1√
nd−1

≤ Ad ,n ≤ ET∈Rn
‖T‖∞
‖T‖

≤ 10

√
d ln d√
nd−1

.

Corollary: in particular,

Ad ,n = O
(

1√
nd−1

)
as n→∞.

The best rank-1 approximation ratio is of the same order of
magnitude as the trivial lower bound when n→∞.
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Qualitative bounds (symmetric case)

Theorem (K., Tonelli-Cueto, 2022+)

For all d ≥ 3 and n ≥ 2 we have

1√
nd−1

≤ A sym
d ,n ≤ ET∈ Symd

n

‖T‖∞
‖T‖

≤ 12
√
n ln d√(n+d−1
d

) ≤ 12

√
d! ln d

nd−1

In particular, for a fixed d ≥ 3 and n→∞

A sym
d ,n = O

(
1√
nd−1

)
= Ad ,n.

IMPORTANT COROLLARY:

Symmetric tensors are as far from being rank-1 as general tensors.
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